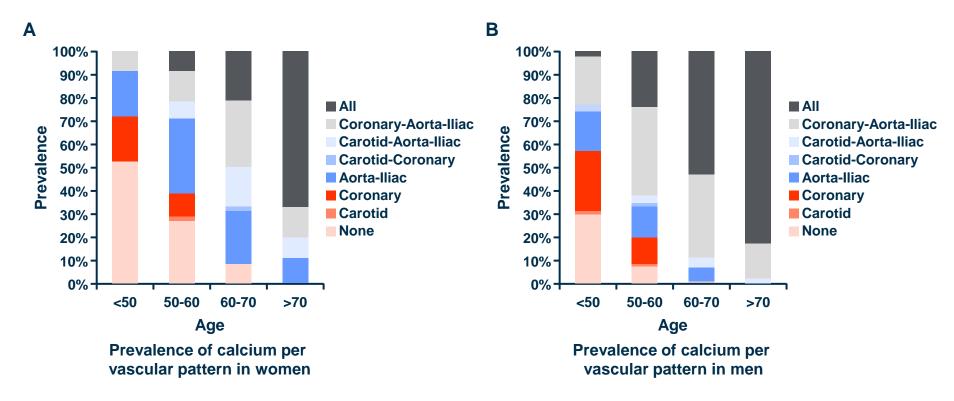
DISRUPT CAD

A multicenter, prospective, single-arm study of percutaneous Lithoplasty prior to stent implantation in heavily calcified coronary lesions

Todd J. Brinton, MD
Clinical Associate Professor of Medicine
Adjunct Professor of Bioengineering
Stanford University

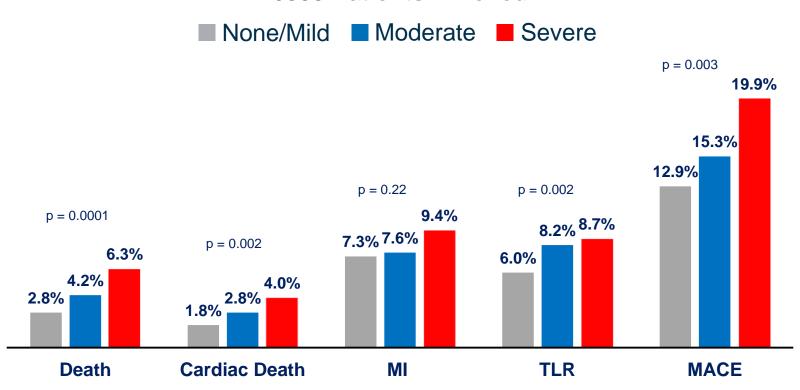


Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship	Company
Grant/Research Support	None
Consulting Fees/Honoraria	Shockwave Medical, Inc., Kona Medical, Inc., Qool Therapeutics
Major Stock Shareholder/Equity	Kona Medical, Inc., Qool Therapeutics, ELS
Royalty Income	None
Ownership/Founder	Shockwave Medical, Inc., BioParadox, Inc.
Intellectual Property Rights	None
Other Financial Benefit	None

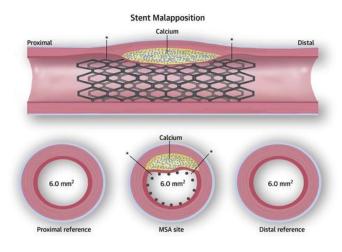
Impact of Age on Vascular Calcification

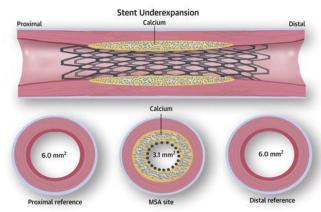


>70 years, all have calcium in at least 1 vascular bed and 2/3 in all arterial beds

Challenges of Treating Calcified Coronary Lesions

HORIZONS-AMI and ACUITY CORONARY CALCIUM: 1 Yr Outcomes 6855 Patients Enrolled




Généreux P; Ischemic outcomes after coronary intervention of calcified vessels. J Am Coll Cardiol 2014;63:1845-54.

Challenges of Treating Calcified Coronary Lesions

Mintz et al. J Am Coll Cardiol 2014;64(2):207-222

Increased Coronary Calcification

Higher pressure to dilate effectively
Higher number of dissections
Decreased stent expansion
More complications
Poor outcomes

- 1. Fitzgerald et al. Circulation 1992;86:64-70
- 2. Potkin et al. J Am Coll Cardiol 1992;20:942-51
- 3. Kovach et al. J Am Coll Cardiol 1993;22:1024-32
- 4. Mintz et al. Circulation 1995;92:3408-14
- 5. Von Birgelen et al. Am J Cardiol 2003;92:5-10

Currently Approved Devices

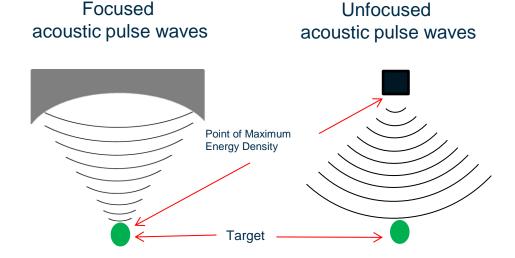
Traditional Balloons

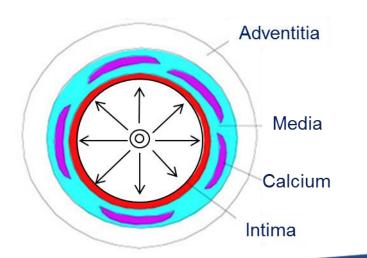
Compliant Non-Compliant

Specialty Balloons

AngioSculpt Scoring Balloon

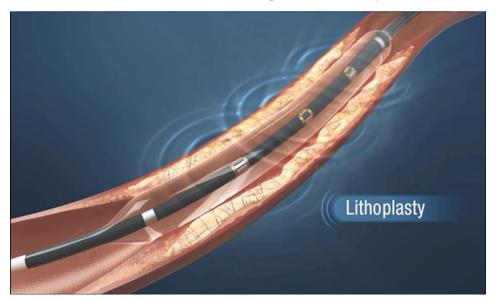
Atherectomy


Rotational : Rotoblator Orbital : CSI



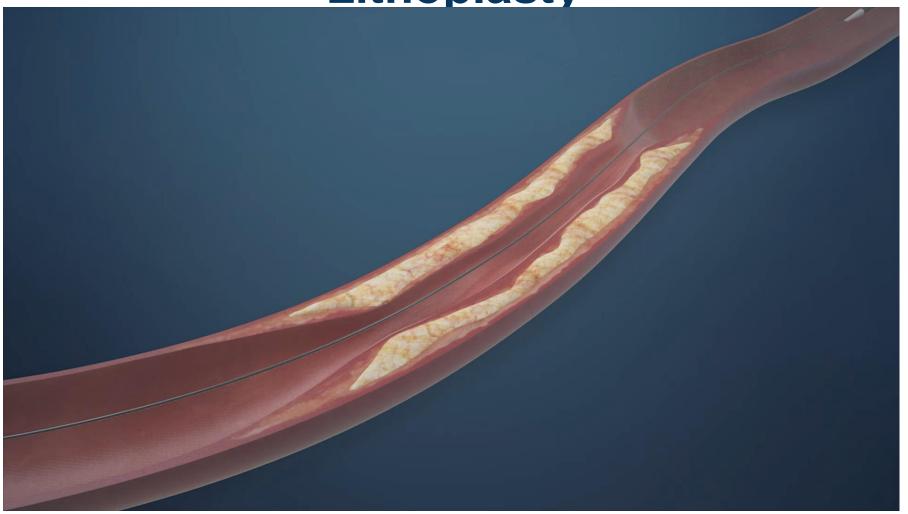
Insight: Lithotripsy → **Lithoplasty**

- Dispersive, non focused lithotripsy
- Dose dependent result
- Circumferential mechanical energy distribution
- 25 years of safety data in kidney stone treatment



Lithoplasty

Lesion modification using lithotripsy in a balloon


Tissue-selective:

- Hard on hard tissue,
 Soft on soft tissue
- Lithotripsy waves travel outside balloon
- Designed to disrupt both superficial, deep calcium
- Designed to normalize vessel wall compliance prior to controlled, low pressure dilatation
- Effective lesion expansion with minimized impact to healthy tissue
- "Front-line" balloon-based Rapid Exchange .014 platform

Lithoplasty

Active Lithoplasty


Baseline

Final

Investigational device

Lithotripsy delivery Nominal pressure Rated burst pressure 4 atm 6 atm 10 atm

0.014" guidewire compatible138 cm working length6F sheath compatibility

Balloon Sizes

Diameter	Length
2.5 mm	12 mm
2.75 mm	12 mm
3.0 mm	12 mm
3.25 mm	12 mm
3.5 mm	12 mm
3.75 mm	12 mm
4.0 mm	12 mm

The Shockwave Medical Coronary Lithoplasty System is investigational and is not available for sale.

Disrupt CAD Study Design

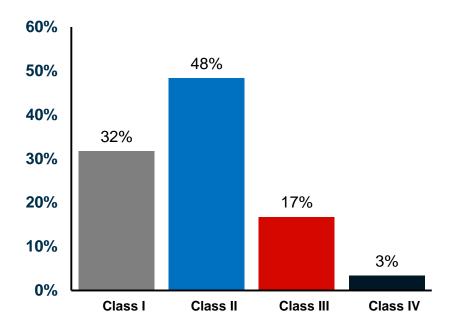
Stable angina, unstable angina or silent ischemia

Moderate and severely calcified, *de novo* coronary lesions RVD 2.5 – 4.0 mm, stenosis ≥50%, Lesion length ≤ 32 mm

60 patients enrolled
31 subject OCT sub-study
30 day & 6 months follow-up
Core Angiographic & OCT Labs
(Yale University & CRF)

- Objective: To assess the safety and performance of the Shockwave Medical Coronary Rx Lithoplasty® System
- Primary Safety Endpoint: MACE within 30 days defined as: Cardiac death, MI or TVR
- Primary Performance Endpoint: Clinical Success defined as residual stenosis (<50%) after stenting with no evidence of in-hospital MACE.

Investigational Sites


60 patients enrollment completed in Sep 2016

Investigator	Site	Enrollment
Jean Fajadet, MD (PI)	Clinic Pasteur, France	10
Carlo Di Mario, MD (Co-PI)	Royal Brompton, England	15
Ian Meredith, MD	Monash Health, Australia	13
Jonathan Hill, MD	King's College, England	14
Nicolas Van Mieghem, MD	Erasmus, Netherlands	4
Robert Whitbourn, MD	St Vincent's, Australia	3
Matthias Götberg, MD	Skane University Hospital, Sweden	1

DISRUPT CAD Baseline Characteristics

	Medical History N= 60
Age	72.1 (9.6)
Male gender	80.0%(48)
Diabetes	30.0% (18)
Hypertension	80.0% (48)
Hyperlipidemia	80.0% (48)
Myocardial Infarction	40.0% (24)
Prior CABG	23.3% (14)
Stroke/TIA	13.3% (8)
Current Smoker	15.0% (9)
Renal insufficiency	10.0% (6)

Angina Classification

Pre-procedure Angiographic Findings

core lab adjudicated

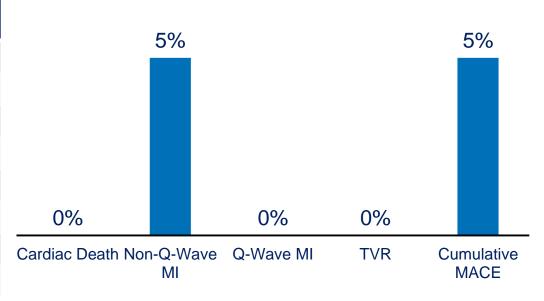
	Pre-Procedure N=60
RVD (mm)	3.0 ± 0.5
MLD (mm)	0.9 ± 0.4
% Diameter stenosis	68.1 ± 13.1
Lesion length (mm)	20.3 ± 10.5
Calcified length (mm)	22.3 ± 12.5
Calcification	
Moderate	13.3% (8)
Severe	80.0% (48)
Lesion Assessment	
Concentric	78.3% (47)
Eccentric	21.7% (13)
Side branch involvement	28.3% (17)

Procedural Characteristics

	Procedural Time N= 60
Lithoplasty Time (min)	6.4
Fluoroscopy time (min)	32.3
Total procedure time (min)	92.9

	Procedural Details N= 60
Pre-dilatation > 1.5mm PTCA *	15% (9)
Number of Lithoplasty balloons	2.0
Number of pulses	88
Mean Lithoplasty pressure (atm)	6.0
Avg. Number of stents	1.4
Post-dilatation	86.7% (52)

^{*1.5}mm PTCA balloon was allowed to facilitate OCT imaging catheter


Safety Outcomes

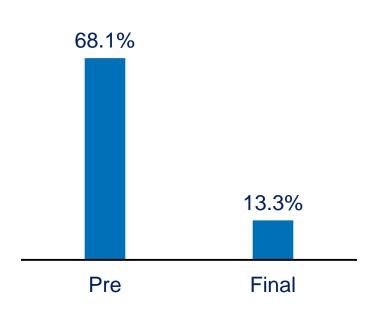
Procedural Angiographic Complications

	Final N = 60
Dissection	
None	100% (60)
A to C	0.0%
D to F	0.0%
Perforation	0.0%
Abrupt Closure	0.0%
Slow flow	0.0%
No reflow	0.0%

Angiographic core lab adjudicated

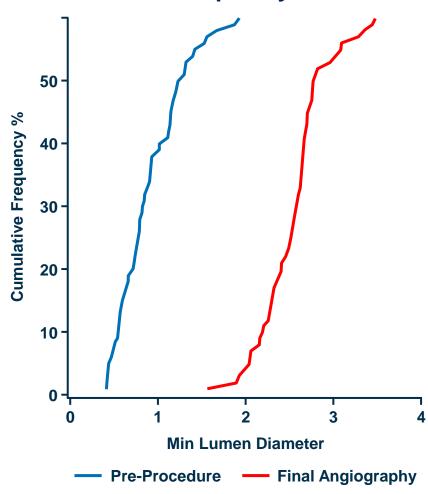
Freedom from 30-day MACE: 95%

CEC adjudicated


Primary Performance Outcomes

	N= 60
Clinical Success	95.0% (57)
Device Success	98.3% (59)
Facilitated Stent Delivery	100% (60)

- Clinical success defined as residual stenosis <50% after stenting with no evidence of in-hospital MACE.
- Device success defined as successful device delivery and Lithoplasty treatment at the target lesion.


Performance Outcomes

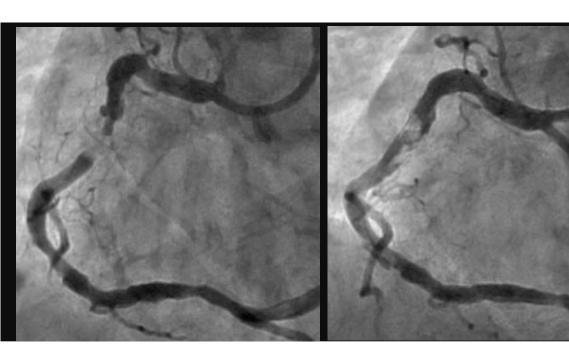
% Diameter Stenosis

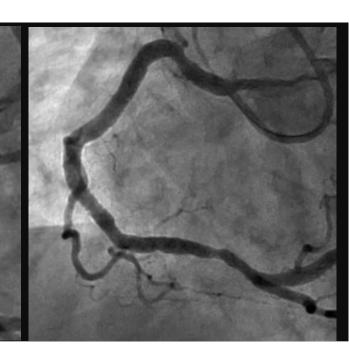
	Pre	Final
MLD (mm)	0.9 ± 0.4	2.6 ± 0.5
Acute Gain (mm)	NA	1.7 ± 0.6

Cumulative Frequency Distribution

Case 1

Baseline Post Lithoplasty Final

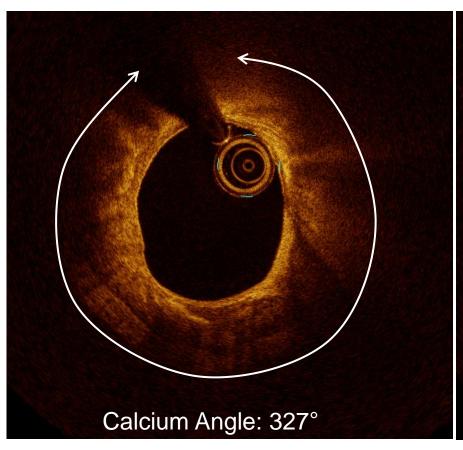

2.4mm RVD80.3% stenosis7.6mm length

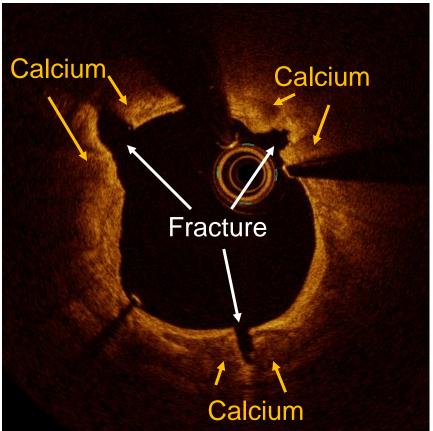

2.75 and 3.0mm Lithoplasty

4.7% stenosis
Acute gain 2.1
Stent length 18.3mm

Case 2

Baseline Post Lithoplasty Final


3.6mm RVD 87.6% stenosis 37.5mm length


4.0mm Lithoplasty

4.0% stenosis
Acute gain 3.1
Stent length 40.5mm

Cardiovascular Research Foundation

Mechanism of Lithoplasty

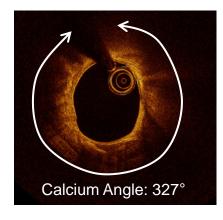
Pre-Procedure Final

Cardiovascular Research Foundation

OCT Case Review

Example 2 Example 3 Example 1 procedure Lumen Area: 4.12mm² Lumen Area: 2.98mm² Lumen Area: 6.00mm² Lithoplasty Lumen Area: 7.69mm² Lumen Area: 6.40mm² Lumen Area: 6.34mm² **Post Stent** Lumen Area: 8.99mm² Lumen Area: 8.15mm² Lumen Area: 9.79mm² Stent Area: 8.16mm² Stent Area: 7.44mm² Stent Area: 8.55mm²

Final


Pre-

Post-

OCT Summary

	Pre	Final
Minimum lumen area (mm²)	2.2 ±1.1	6.0 ± 2.0
Area stenosis (%)	66 ± 11	20 ± 20
Acute gain (mm²)		3.7±1.5

Calcium Measurements	
Maximum Ca angle (degree)	229 ± 93
Maximum Ca thickness (mm)	0.97 ± 0.25
Quadrants of Ca Fracture / Lesion	34

OCT Tertile Analysis

By Calcium Burden

	Lowest Tertile	Middle Tertile	Highest Tertile	P-value
Pre Procedure				
Minimum lumen area (mm²)	1.4	2.0	2.4	0.12
Area stenosis (%)	69	69	64	0.67
Maximum Ca angle (°)	130	233	323	<0.001
Ca length (mm)	11.7	16.3	30.2	<0.001
Final				
Stent area (mm²)	4.5	5.0	6.3	0.32
Complete Ca fracture, %	22%	55%	78%	0.059
Acute gain (mm²)	1.8	1.6	2.5	0.38

Conclusions

- The Disrupt CAD Study successfully enrolled a population with complex, calcified, obstructive coronary disease.
- The Lithoplasty balloon-based therapy resulted in 98% device success and facilitated100% stent delivery.
- The study demonstrated a low MACE rate of 5.0% with minimal vascular complications.
- Core lab angiographic analysis demonstrated high acute gain and low residual stenosis.
- OCT sub-study showed clear evidence of circumferential calcium fracture as the mechanism for vessel dilatation prior to stent placement.
- OCT sub-study demonstrated high luminal acute gain independent of the degree of calcification in this hard to treat population.

