LV Functional Recovery after CTO PCI.
Serial CMR substudy of the Explore trial.
CTO PCI after STEMI

On behalf of the EXPLORE Trial investigators

José P.S. Henriques
Academic Medical Center
University of Amsterdam
The Netherlands
Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

<table>
<thead>
<tr>
<th>Affiliation/Financial Relationship</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grant/Research Support</td>
<td>• Abbott Vascular</td>
</tr>
<tr>
<td></td>
<td>• Abiomed Inc</td>
</tr>
<tr>
<td></td>
<td>• Biotronik</td>
</tr>
<tr>
<td></td>
<td>• BBraun</td>
</tr>
</tbody>
</table>
Background

- CTO in non-IRA in 10% of STEMI patients

- Excess mortality in MVD patients mainly driven by presence of CTO

- Reduced LV function in MVD patients mainly driven by presence of CTO

Van der Schaaf et al, *Heart*, 2006
Claessen et al. *JACC: Cardiovascular Interventions*, 2009
EXPLORE Trial design

Patients

300 Patients with STEMI treated with pPCI and with a non-infarct related CTO.

Design

Global, multi-center, randomized, prospective two-arm trial with either PCI of the CTO or no CTO intervention after STEMI. Blinded evaluation of endpoints

Objective

To determine whether PCI of the CTO within seven days after STEMI results in a higher LVEF and a lower LVEDV assessed by CMR at 4 months
EXPLORE Trial Outcome

- Early CTO-PCI:
 - not associated with higher LVEF and lower LVEDV @ 4 months

CTO-PCI in the LAD was associated with higher LVEF @ 4 months
47.2±12.3% vs. 40.4±11.9%, p=0.02
EXPLORE serial CMR substudy - Objectives

GLOBAL LVF

• In-depth analysis of global functional recovery
• In-patient analysis serial CMR analysis allows to correct for possible baseline differences
• Impact of CTO Location

REGIONAL LVF

• On regional level lower %dysfunctional segments/patient after CTO PCI vs. no-CTO PCI at 4 months FU
 • (58 ±27% versus 62 ±27%, p= 0.30)
• However, no quantitative analysis in single segments performed
Serial CMR data

- CMR core laboratory
- CMR allows analysis of regional segmental outcome (segmental wall thickening (SWT))
- Dysfunctional segm = SWT < 45%
- Serial: Baseline to 4 month FU

302 patients with STEMI + CTO

1:1

- CTO PCI (n=148)
 - Functional serial CMR data (n=80)
 - Regionall serial CMR data (n=74)
- No-CTO PCI (n=154)
 - Functional serial CMR data (n=100)
 - Regional serial CMR data (n=87)
Functional recovery

<table>
<thead>
<tr>
<th>Variable</th>
<th>CTO-PCI (n=80)</th>
<th>No CTO-PCI (n=100)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEF@Baseline</td>
<td>40.6 (11.8)</td>
<td>41.7 (12.1)</td>
<td>0.55</td>
</tr>
<tr>
<td>LVEF @ FUP</td>
<td>45.3 (11.6)</td>
<td>45.5 (11.8)</td>
<td>0.87</td>
</tr>
<tr>
<td>Δ LVEF</td>
<td>4.6 (8.3)</td>
<td>3.8 (8.1)</td>
<td>0.52</td>
</tr>
<tr>
<td>LVEDV@Baseline (ml)</td>
<td>210.1 (53.4)</td>
<td>209.5 (55.1)</td>
<td>0.95</td>
</tr>
<tr>
<td>LVEDV @ FUP</td>
<td>215.6 (54.6)</td>
<td>212.5 (53.9)</td>
<td>0.71</td>
</tr>
<tr>
<td>Δ LVEDV</td>
<td>5.5 (32.4)</td>
<td>3.0 (25.7)</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Serial global functional CMR data available in 180 pts
Patients with and without serial CMR were comparable
Impact of CTO location

<table>
<thead>
<tr>
<th></th>
<th>CTO LAD</th>
<th></th>
<th></th>
<th>CTO non-LAD</th>
<th></th>
<th></th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CTO-PCI (n=36)</td>
<td>No CTO-PCI (n=39)</td>
<td>P-value</td>
<td>CTO-PCI (n=112)</td>
<td>No CTO-PCI (n=115)</td>
<td>P-value</td>
<td></td>
</tr>
<tr>
<td>Age (years, mean, SD)</td>
<td>64(9)</td>
<td>60(12)</td>
<td>0.13</td>
<td>58(10)</td>
<td>60(10)</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>Male gender (%)</td>
<td>83</td>
<td>74</td>
<td>0.41</td>
<td>90</td>
<td>84</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Infarct related artery</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>RCA (%)</td>
<td>75</td>
<td>74</td>
<td></td>
<td>17</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CX (%)</td>
<td>22</td>
<td>23</td>
<td></td>
<td>20</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAD (%)</td>
<td>3</td>
<td>3</td>
<td></td>
<td>63</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-VD (%)</td>
<td>47</td>
<td>36</td>
<td>0.36</td>
<td>40</td>
<td>46</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>MI SYNTAX score II</td>
<td>30(7)</td>
<td>30(11)</td>
<td>0.38</td>
<td>25(9)</td>
<td>26(9)</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>LVEF at baseline (mean, SD)*</td>
<td>44(11)</td>
<td>38(14)</td>
<td>0.07</td>
<td>39(11)</td>
<td>43(12)</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>
Global LV recovery

<table>
<thead>
<tr>
<th>Variable</th>
<th>CTO LAD</th>
<th>CTO non-LAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CTO-PCI (n=25)</td>
<td>No CTO-PCI (n=22)</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>44.5 (11.6)</td>
<td>36.7 (13.5)</td>
</tr>
<tr>
<td>4 months FU</td>
<td>48.4 (10.5)</td>
<td>40.6 (12.6)</td>
</tr>
<tr>
<td>Δ LVEF</td>
<td>3.9 (9.2)</td>
<td>3.8 (7.3)</td>
</tr>
<tr>
<td>LVEDV (ml)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>197.1 (57.4)</td>
<td>231.1 (64.8)</td>
</tr>
<tr>
<td>4 months FU</td>
<td>203.4 (64.0)</td>
<td>227.1 (70.7)</td>
</tr>
<tr>
<td>Δ LVEDV</td>
<td>6.3 (23.6)</td>
<td>-4.0 (29.6)</td>
</tr>
</tbody>
</table>

Success rate CTO-PCI: 80.6% versus 71.2% (p=0.27)
Regional segmental recovery

Change in % SWT (baseline to 4 months)

All segments (s = 2576)

Dysfunctional segments SWT<45% (s=1511)

Between arms p=0.28

Between arms p=0.06
Recovery in CTO territory

- Change in %SWT (baseline to 4 months) in CTO territory

All segments (s= 845)

Between arms p=0.09

<table>
<thead>
<tr>
<th>%Segmental Wall thickening</th>
<th>CTO PCI</th>
<th>No-CTO PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>30</td>
</tr>
</tbody>
</table>

Dysfunctional segments (s=501)

Between arms p=0.03

<table>
<thead>
<tr>
<th>%Segmental Wall thickening</th>
<th>CTO PCI</th>
<th>No-CTO PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>30</td>
</tr>
</tbody>
</table>
Impact of location – CTO LAD

all segments (s=640)

Between arms p=0.04

% Segmental Wall thickening

CTO PCI 52 56
No-CTO PCI 37 39

dysfunctional segments (s=374)

Between arms p=0.03

% Segmental Wall thickening

CTO PCI 25 43
No-CTO PCI 21 29
Impact of location – CTO nonLAD

all segments (s=1936)
Between arms p=NS

%Segmental Wall thickening

CTO PCI: 37, 45
No-CTO PCI: 44, 48

Dysfunctional segments (s=1210)
Between arms p=NS

%Segmental Wall thickening

CTO PCI: 21, 35
No-CTO PCI: 23, 36
Impact of success in CTO LAD vs CTO non-LAD

- **LAD**: all segments (s=352) and dysfunctional segments (s=173)

Between arms $P<0.001$
Limitations

- Small sample size
- Relatively low number of analyzable segments
- Baseline LVEF was different in the different subgroups
- Baseline CMR was not performed in all patients

However, largest paired CMR dataset in the CTO field
Conclusion

• Serial CMR confirm primary endpoints of Explore trial on global LV
• However, baseline characteristics in the subgroups differed significantly
• CTO PCI compared with no-CTO PCI associated with a greater recovery of regional segmental outcome, especially in the CTO territory
• The positive effect of CTO PCI on regional segmental outcome did not lead to a significant effect on global functional outcome

• No data on the effect of recovery of regional myocardial function and its impact on myocardial electrical stability and the translation to clinical outcome
• Further research is needed to understand the effect of CTO PCI on regional segmental recovery and its clinical impact

Submitted
STILL A LOT TO EXPLORE

www.explorettrial.com