Guided de-escalation of antiplatelet treatment in ACS patients undergoing PCI

Results of the TROPICAL-ACS study: a randomised, investigator-initiated, open-label, multicentre-trial

Background I – Platelet inhibition in ACS patients

- Current guidelines\(^1\) recommend **uniform & potent platelet inhibition** with prasugrel or ticagrelor for 12 months after PCI for ACS
- However, **risk patterns** (early vs. late risk) for ischaemic and bleeding complications **differ over time**\(^2,3\)

\(^1\)Roffi et al., ESC ACS Guidelines, EHJ 2016, \(^2\)Antman et al., JACC 2008; \(^3\)Becker et al., EHJ 2011
Background II – Early anti-ischaemic benefit of potent inhibition

Wiviott et al., NEJM 2007
Background III – Late excess & growing bleeding risk over time

Antman et al., JACC 2008
Background IV – Concept of de-escalation

- Conceptually, a stage-adapted treatment with **de-escalation from potent drugs to the less potent clopidogrel** early after an ACS may be beneficial.

- To date, **solid evidence showing safety of de-escalation** is lacking.

- Despite of this, **DAPT de-escalation is commonly done** for clinical (e.g. bleeding, side-effects) and economic (generic clopidogrel) reasons (TRANSLATE-ACS\(^1\)).

- A potential obstacle for de-escalation could be **clopidogrel’s large response variability**\(^2\) - any de-escalation regimen should account for this issue

\(^1\)Zettler et al., AHJ 2017, \(^2\)Gurbel et al., Circulation 2003
Background V – Levels of platelet inhibition & outcomes

Collaborative meta analysis:
- 17 studies
- 20,839 patients

- Platelet function testing (PFT) could serve to make de-escalation safer by identifying low responders to clopidogrel.

Aradi, ..., Sibbing, EHJ 2015
In the TROPICAL-ACS* trial we aimed to investigate the safety and efficacy of early de-escalation of antiplatelet treatment from prasugrel to clopidogrel guided by platelet function testing (PFT).

* TROPICAL-ACS: Testing Responsiveness To Platelet Inhibition On Chronic Antiplatelet Treatment For Acute Coronary Syndromes
Trial Conduct (33 study sites in Europe)

Academic Sponsor
Klinikum der Universität München, LMU Munich

Steering Committee
Steffen Massberg (Chair), Dirk Sibbing (CI), Daniel Aradi, Lukasz Koltowski, Kurt Huber, Franz-Josef Neumann, Julinda Mehilli, Jörg Hausleiter

Coordinating Center
CSCLMU, Clinical Study Center, LMU Munich

Study Monitoring and Data Management
Monitoring: Münchner Studienzentrum (MSZ)
Data Management: Technische Universität Dresden (KKS)

Data Safety and Monitoring Board (DSMB)
Albert Schömig, Helmut Schühlen, Martin Hadamitzky

Independent Event Adjudication Committee (EAC)
Dritan Poci, Jürgen Pache, Ute Wilbert Lampen
Inclusion Criteria

- Biomarker positive ACS
- Successful PCI
- Planned DAPT for 12 months after PCI
- Written informed consent

Key Exclusion Criteria

- Age <18 years and >80 years
- Contraindications to study drugs
- Active bleeding
- History of TIA or stroke
- Concomitant treatment with anticoagulants (e.g. VKA, NOACS)
- Indication for major surgery
Primary study endpoint

Composite endpoint consisting of:
- Death from cardiovascular cause
- Myocardial infarction
- Stroke
- Bleeding events grade 2 or above (BARC criteria)

„Net-clinical benefit“: assessed for non-inferiority @ 1 year follow-up
Secondary study endpoints

- **Bleeding events 2 or above according to BARC criteria**
 - = key secondary EP: assessed for superiority
- Death from any cause
- Stent thrombosis according to ARC criteria
- Ischemic components (combined & singular) of the primary endpoint
- Urgent revascularization

@ 1 year follow-up
Trial Design

Biomarker positive ACS patients with successful PCI

Control group
- 14 days prasugrel

Guided de-escalation group
- 7 days prasugrel
- 7 days clopidogrel

PFT (Multiplate analyser) @ 2 weeks after discharge

- **Low Responders (HPR*)**
 - 11½ months prasugrel
- **Good Responders (no HPR*)**
 - 11½ months clopidogrel

Uniform antiplatelet therapy with prasugrel

*HPR denotes high platelet reactivity

For further details on TROPICAL-ACS trial design see: Sibbing et al., Thromb Haemost. 2017;117:188-195 -
Sample size calculation

Primary hypothesis:
Non-inferiority of PFT-guided de-escalation vs. standard 1-year prasugrel treatment

Statistical assumptions:
- Incidence for the primary endpoint @ 1 year follow-up: 10.5%
- Non-inferiority margin of 30%
- Power: 80%, alpha-level: 5%
- Sample size: 1197 patients per group
- 1300 planned to compensate for losses to follow-up
Biomarker positive ACS patients (n=2610) with successful PCI

Control (n=1306)
- 14 days prasugrel

Guided de-escalation (n=1304)
- 7 days prasugrel
- 7 days clopidogrel

PFT (Multiplate analyser) @ 2 weeks after discharge
- Low Responders (40%)
- Good Responders (60%)

Follow-up:
- 98% @ 2 weeks
- 96% @ 12 months

Adherence to treatment: >94% in both groups

R*: 1:1

Dec 2013 – May 2016

Study patients & follow-up data
Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Control group (n = 1306)</th>
<th>Guided de-escalation group (n = 1304)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>59 (SD 10)</td>
<td>59 (SD 10)</td>
</tr>
<tr>
<td>Female sex</td>
<td>283 (22%)</td>
<td>275 (21%)</td>
</tr>
<tr>
<td>Previous PCI</td>
<td>186 (14%)</td>
<td>173 (13%)</td>
</tr>
<tr>
<td>Previous CABG</td>
<td>46 (4%)</td>
<td>39 (3%)</td>
</tr>
<tr>
<td>Previous MI</td>
<td>153 (12%)</td>
<td>140 (11%)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>287 (22%)</td>
<td>240 (18%)</td>
</tr>
<tr>
<td>Current smoker</td>
<td>591 (45%)</td>
<td>591 (45%)</td>
</tr>
<tr>
<td>Arterial hypertension</td>
<td>806 (62%)</td>
<td>793 (61%)</td>
</tr>
<tr>
<td>Hyperlipidaemia</td>
<td>529 (41%)</td>
<td>546 (42%)</td>
</tr>
</tbody>
</table>
Procedural Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Control group (n = 1306)</th>
<th>Guided de-escalation group (n = 1304)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEMI</td>
<td>722 (55%)</td>
<td>731 (56%)</td>
</tr>
<tr>
<td>NSTEMI</td>
<td>584 (45%)</td>
<td>573 (44%)</td>
</tr>
<tr>
<td>Access site:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachial</td>
<td>3 (<1%)</td>
<td>--</td>
</tr>
<tr>
<td>Femoral</td>
<td>541 (41%)</td>
<td>523 (40%)</td>
</tr>
<tr>
<td>Radial</td>
<td>762 (58%)</td>
<td>781 (60%)</td>
</tr>
<tr>
<td>Diseased vessels:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>682 (52%)</td>
<td>659 (51%)</td>
</tr>
<tr>
<td>2</td>
<td>345 (26%)</td>
<td>359 (28%)</td>
</tr>
<tr>
<td>3</td>
<td>279 (21%)</td>
<td>286 (22%)</td>
</tr>
<tr>
<td>Anticoagulant for PCI:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalirudin</td>
<td>55 (4%)</td>
<td>54 (4%)</td>
</tr>
<tr>
<td>LMWH</td>
<td>70 (5%)</td>
<td>72 (6%)</td>
</tr>
<tr>
<td>UFH</td>
<td>1181 (90%)</td>
<td>1178 (90%)</td>
</tr>
<tr>
<td>Stent type:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DES</td>
<td>1002 (77%)</td>
<td>1003 (77%)</td>
</tr>
<tr>
<td>BMS</td>
<td>208 (16%)</td>
<td>224 (17%)</td>
</tr>
<tr>
<td>BVS</td>
<td>83 (6%)</td>
<td>68 (5%)</td>
</tr>
<tr>
<td>None (POBA)</td>
<td>13 (1%)</td>
<td>9 (1%)</td>
</tr>
</tbody>
</table>
Primary Endpoint (CVD, MI, stroke, BARC ≥2)

Event probability (%)

No. at risk
Control 1306 1238 1220 1190 1132 1124 924
De-escalation 1304 1234 1213 1189 1129 1124 942

HR 0.81 (0.62-1.06)
p = 0.0004 for non-inferiority
(p = 0.1202 for superiority)

-- Control group
-- Guided de-escalation group

ESC CONGRESS
BARCELONA 2017
#esccongress
www.escardio.org/ESC2017
Key Secondary endpoint
Bleeding BARC ≥2

All bleeding events (BARC 1 to 5)
Ischemic events at 12 months follow-up

- All-cause mortality: 12 events (1%) in control vs. 11 (1%) in guided de-escalation group, p=0.85

- Definite ST: 3 events (0.2%) in control vs. 2 (0.2%) in guided de-escalation group, p=0.66

HR 0.77 (0.48-1.21) p=0.0115 for non-inferiority
Subgroup Analyses (primary endpoint)

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>HR (95% CI)</th>
<th>p value for interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>0.81 (0.62-1.06)</td>
<td></td>
</tr>
<tr>
<td>ACS-Presentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEMI (n=1453)</td>
<td>0.54 (0.35-0.83)</td>
<td>0.01</td>
</tr>
<tr>
<td>NSTEMI (n=1157)</td>
<td>1.10 (0.77-1.58)</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men (n=2052)</td>
<td>0.78 (0.57-1.06)</td>
<td>0.60</td>
</tr>
<tr>
<td>Women (n=558)</td>
<td>0.92 (0.63-1.62)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 70 years (n=370)</td>
<td>1.17 (0.69-2.01)</td>
<td>0.11</td>
</tr>
<tr>
<td>\leq 70 years (n=2240)</td>
<td>0.70 (0.51-0.96)</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes (n=527)</td>
<td>1.17 (0.71-1.93)</td>
<td>0.10</td>
</tr>
<tr>
<td>No (n=2083)</td>
<td>0.71 (0.52-0.99)</td>
<td></td>
</tr>
</tbody>
</table>

Guided de-escalation better

Uniform prasugrel better
Conclusions

- A stage-adapted and individualized antiplatelet treatment with initial potent platelet inhibition (prasugrel), followed by guided DAPT de-escalation to clopidogrel proved to be feasible and safe when compared to conventional 12-month prasugrel therapy in ACS patients undergoing PCI.

- PFT-guided DAPT de-escalation should be considered as an alternative DAPT strategy in ACS patients undergoing PCI.
Guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS): a randomised, open-label, multicentre trial

Dirk Sibbing*, Dániel Aradi†, Claudius Jacobshagen, Lisa Gross, Dietmar Trenk, Tobias Geisler, Martin Orban, Martin Hadamitzky, Béla Merkely, Robert Gábor Kiss, András Komócsi, Csaba A Dézsi, Lesca Holdt, Stephan B Felix, Radoslaw Parma, Mariusz Klopotowski, Robert H G Schwinger, Johannes Rieber, Kurt Huber, Franz-Josef Neumann, Lukasz Kolotowski, Julinda Mehilli, Zenon Huczek, Steffen Massberg, on behalf of the TROPICAL-ACS Investigators†

Summary

Background Current guidelines recommend potent platelet inhibition with prasugrel or ticagrelor for 12 months after an acute coronary syndrome managed with percutaneous coronary intervention (PCI). However, the greatest anti-ischaemic benefit of potent antiplatelet drugs over the less potent clopidogrel occurs early, while most excess bleeding events arise during chronic treatment. Hence, a stage-adapted treatment with potent platelet inhibition in the acute phase and de-escalation to clopidogrel in the maintenance phase could be an alternative approach. We aimed to investigate the safety and efficacy of early de-escalation of antiplatelet treatment from prasugrel to clopidogrel guided by platelet function testing (PFT).
Thanks for your attention!