BNP signal peptide protects the heart from ischemia-reperfusion injury

Chris Pemberton, Maithri Siriwardena, Chris Charles, Mat Byers, Prisca Mbikou, Jacqui Keenan, Miriam Rademaker, Richard Troughton, Mark Richards
Mechanism of ischemia/injury mediated cell death

Cardio-protection pathways

There is a clear need for novel ischemia/reperfusion therapies

Signal peptides are generally thought to be destroyed at translation. We discovered the signal peptide from BNP to be present in the circulation

Siriwardena et al. 2010 Circulation 122: 255
BNPsp is elevated in blood very early after ACS

Siriwardena et al. 2010 Circulation 122: 255-264
Liebetrau et al. 2015 Clin Chem 61: 1532-1539

Quaeritur: is BNPsp passive or active during its ACS release - 1?

Investigated *ex vivo* potential of human BNPsp to be protective in cardiac ischemia

Rat ex vivo isolated heart ischemia model
(n=35 pre-condition, n= 28 at reperfusion)

- Haemodynamics
- Perfusate sampling – cTnI, myoglobin
- TUNEL staining, Caspase 3 staining
- Western Blot analysis of signalling proteins

ESC Congress
Munich 2018
Troponin I Release

-50 0 50 100

0.5 1.0 1.5

control (n=9)

0.3nmol (n=10)

10nmol (n=8)

0.1nmol (n=8)

Time from Reperfusion (minutes)

Troponin I (μg/L)

ᵠᵠᵠᵠ = P<0.01 vs control

₀ᵠᵠᵠᵠ = P<0.01 vs control

₀.₃nmol/L preconditioning 1 nmol/L at reperfusion

₁₀nmol/L preconditioning Control

TUNEL positive cell

% apoptotic cells

*P<0.05

₀*₀*₀*₀*₀*₀

₀.₃nmol (pre)

₁₀nmol (IDR)

Control

Caspase-3 staining tended to reduce

ESC Congress
Munich 2018
% pERK 1/Total ERK is upregulated by lower BNPsp doses

- Significant difference from Sham p< 0.05 for pERK1
 - Control n=6, sham n=6, 0.3nM n=5, 1nM n=6, 3nM n=5
pAkt is unaltered by low, but inhibited by higher BNPsp

* p< 0.01 vs. control
Φ p<0.01 vs. sham

Control n=6, sham n=6, 0.3nM n=5, 1nM n=6, 3nM n=5
Quaeritur: is BNPsp passive or active during its ACS release - 2?

Investigated *in vivo* potential of human BNPsp to be protective in cardiac ischemia

- Ovine *in vivo* normal animal infusions (n=6)
 - LCA (angiocath), jugular (polyeth and PA Swan ganz) and Foley urinary cannulation

- Ovine *in vivo* pre-conditioning ischemia model (control n=7, BNPsp Tx n= 8)
 - Continuous 150min BNPsp infusion across ischemia
 - Reversible ischemia via 90min snare
 - Haemodynamics
 - Echo to determine LVEF & AAR
 - Blood sampling – cTnI, BNPsp
 - TUNEL staining, Caspase 3 staining
 - Infarct size/AAR determination by sectioning on day 6/7 after euthanasia
Hemodynamics

- **Infusion of BNPsp or vehicle**
- **Anesthesia**
- **Ischemia - Reperfusion**

Echocardiography

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>BNPsp -</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of segments of LV (AAR)</td>
<td>2.63 (±0.460)</td>
<td>2.86 (±0.690)</td>
<td>0.48</td>
</tr>
<tr>
<td>Pre-op LV vol diast (ml)</td>
<td>69.8 (±14.9)</td>
<td>75.2 (±16.2)</td>
<td>0.86</td>
</tr>
<tr>
<td>Pre-op LV vol systol (ml)</td>
<td>31.7 (±6.9)</td>
<td>32.5 (±9.0)</td>
<td>0.85</td>
</tr>
<tr>
<td>Pre-op LVEF(%)</td>
<td>56.4 (±5.5)</td>
<td>55.9 (±6.4)</td>
<td>0.63</td>
</tr>
<tr>
<td>Post-op LV vol diast (ml)</td>
<td>72.8 (±21.9)</td>
<td>75.5 (±23.4)</td>
<td>0.72</td>
</tr>
<tr>
<td>Post-op LV vol systol (ml)</td>
<td>44.1 (±13.1)</td>
<td>50.2 (±15.9)</td>
<td>0.77</td>
</tr>
<tr>
<td>Post-op LVEF(%)</td>
<td>40.3 (±5.2)</td>
<td>44.2 (±6.9)</td>
<td>0.38</td>
</tr>
</tbody>
</table>
Large variation in achieved levels of human BNPsp in vivo

Achieved hBNPsp levels - Sheep Infarction Study

Troponin I Release in Sheep Infarction Study

Cumulative Troponin I Release - Sheep Infarction Study Adjusted for Area at Risk

Study hearts

Control hearts

Infused at 1mcg/kg/min

r=0.77
p<0.001

r=0.62
p=0.02
Like ex vivo rat heart, trend to reduced Caspase-3.
Conclusions

• BNPsp does not appear to have any major biological actions in the setting of normal cardiac function or health

• However, BNPsp has cardio-protective actions in the setting of I/R injury

• Ex vivo cardiac function is improved by BNPsp post-I/R, with concomitant reductions in troponin release and DNA fragmentation (TUNEL). Caspase-3 activation trended towards a reduction whereas pERK1 is significantly activated at the dose range 0.3-1nM; pAkt activation is inhibited at higher doses (>3nM).

• In vivo, BNPsp reduces infarct size/AAR by a remarkable ~50%, troponin release by ~25%, DNA fragmentation and may improve cardiac function.

• The actions of BNPsp appear dose dependent and look likely to follow the U-shaped curve well known for other Tx agents. Any effect on receptor actions is unknown. The half-life/clearance mechanism of BNPsp is unknown, but may involve the liver (Siriwardena et al. Circulation 2010 122:255-264).
Research group and funding sources

Maithri Siriwardena

Chris Charles

Prisca Mbikou

ESC Congress
Munich 2018