Health Status after Transcatheter vs. Surgical Aortic Valve Replacement in Patients with Severe Aortic Stenosis at Low Surgical Risk

Suzanne J. Baron MD MSc
on behalf of The PARTNER 3 Investigators
Lahey Hospital and Medical Center
Saint Luke’s Mid America Heart Institute

TCT | San Francisco, CA | September 29, 2019
Disclosures

• The PARTNER 3 trial (NCT 02675114) and quality-of-life substudy was supported by a research grant from Edwards LifeSciences.

• Within the past 12 months, I have had a financial interest, arrangement or affiliation with the organizations listed below:
 – Edwards LifeSciences: Consulting fees
 – Boston Scientific Corp: Research grant support; Advisory board
The PARTNER 3 and Evolut Low Risk trials have demonstrated that transfemoral TAVR is both safe and effective when compared with SAVR in patients with severe aortic stenosis at low surgical risk.

While prior studies have demonstrated improved early health status with transfemoral TAVR compared with SAVR in intermediate and high-risk patients, there is little evidence of any late health status benefit with TAVR.

Whether treatment of a lower risk population might demonstrate a late health status benefit of TAVR vs. SAVR is unknown.
Study Objectives

• To compare health status outcomes among patients with severe AS at low surgical risk treated with either TAVR or SAVR

• To identify factors associated with any differential health status benefits of TAVR vs. SAVR at 1 year
Methods: Study Design

- Patients with severe AS determined to be at low-surgical risk (STS < 4%) were randomized 1:1 to transfemoral TAVR with the SAPIEN-3 balloon expandable valve or SAVR at 71 sites

- Key Exclusion Criteria
 - Bicuspid aortic valve
 - Severe untreated coronary artery disease
 - Unfavorable anatomy for transfemoral TAVR
 - Significant frailty
 - Severe renal or lung disease

- Measures of health status were collected at baseline, 1 month, 6 months and 1 year with plans for on-going annual assessment through 10 years
Methods: Health Status Measures

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Description/Role</th>
</tr>
</thead>
</table>
| Kansas City Cardiomyopathy Questionnaire (KCCQ) | • Heart Failure-specific
 • Domains: Symptoms, Physical Limitations, Quality of Life, Social Limitations
 • Scores: 0-100 (higher = better)
 • KCCQ-Overall Summary Score (KCCQ-OS)
 - Δ 5, 10, 20 points = small, moderate, large clinical change |
| SF-36 | • General physical and mental health
 • Scores standardized such that mean = 50 with SD 10 (higher = better)
 • Minimal Clinically Important Difference ~ 2 points |
| EQ-5D (EuroQOL) | • Generic instrument for assessment of utilities
 • Scores: 0-1 (0 = death; 1 = perfect health) |
Statistical Analysis

• **Primary Endpoint:** KCCQ-OS Score through 12 months

• **Analytic Population:** as-treated patients with any available baseline health status assessment

• Scores between treatment groups compared using longitudinal random-effects growth curve models at each time point with adjustment for age, sex, baseline health status and treatment assignment

• Categorical analyses performed to incorporate both survival and health status

• Pre-specified subgroups examined with interaction terms
 – Age, sex, STS risk score, atrial fibrillation, LVEF, and NYHA Class
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>TAVR N = 494</th>
<th>SAVR N = 449</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>73.3 yrs</td>
<td>73.6 yrs</td>
<td>0.47</td>
</tr>
<tr>
<td>Male</td>
<td>67.4%</td>
<td>71.3%</td>
<td>0.20</td>
</tr>
<tr>
<td>STS Risk Score</td>
<td>1.9</td>
<td>1.9</td>
<td>0.23</td>
</tr>
<tr>
<td>Coronary Artery Disease</td>
<td>27.6%</td>
<td>27.6%</td>
<td>0.99</td>
</tr>
<tr>
<td>Peripheral Arterial Disease</td>
<td>6.9%</td>
<td>7.4%</td>
<td>0.80</td>
</tr>
<tr>
<td>Prior Stroke</td>
<td>3.4%</td>
<td>5.1%</td>
<td>0.26</td>
</tr>
<tr>
<td>COPD</td>
<td>5.1%</td>
<td>6.0%</td>
<td>0.57</td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>15.6%</td>
<td>18.8%</td>
<td>0.23</td>
</tr>
<tr>
<td>Ejection Fraction</td>
<td>65.7%</td>
<td>66.2%</td>
<td>0.43</td>
</tr>
<tr>
<td>Mean AV Gradient</td>
<td>49 mmHg</td>
<td>48 mmHg</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Baseline Health Status

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>TAVR N = 494</th>
<th>SAVR N = 449</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCCQ Overall Summary</td>
<td>70.4 ± 19.4</td>
<td>70.1 ± 20.9</td>
<td>0.83</td>
</tr>
<tr>
<td>KCCQ Physical Limitation</td>
<td>76.6 ± 19.8</td>
<td>76.9 ± 20.6</td>
<td>0.81</td>
</tr>
<tr>
<td>KCCQ Quality of Life</td>
<td>58.1 ± 24.4</td>
<td>58.2 ± 25.8</td>
<td>0.96</td>
</tr>
<tr>
<td>SF-36 Physical Summary</td>
<td>44.1 ± 9.2</td>
<td>44.1 ± 9.0</td>
<td>0.96</td>
</tr>
<tr>
<td>SF-36 Mental Summary</td>
<td>52.5 ± 9.1</td>
<td>51.3 ± 10.0</td>
<td>0.05</td>
</tr>
<tr>
<td>EQ-5D Utilities</td>
<td>0.83 ± 0.11</td>
<td>0.83 ± 0.13</td>
<td>0.59</td>
</tr>
</tbody>
</table>
Primary Endpoint: KCCQ-Overall Summary

Mean KCCQ-OS Score across different months for TAVR and SAVR procedures. The graph shows a significant improvement in the KCCQ-OS score for TAVR compared to SAVR.

- **TAVR**
 - Months 0 to 3: Δ = 2.6, p = 0.002
 - Months 3 to 6: Δ = 1.8, p = 0.03
 - **Δ ~ 19 points**

- **SAVR**

Months: 0, 3, 6, 9, 12
SF-36 Physical Summary Score

Δ = 7.7
p < 0.001

Δ = 0.6
p = 0.17

Δ = 0.0
p = 0.96
SF-36 Mental Summary Score

Δ = 4.1
p < 0.001

Δ = 0.0
p = 0.99

Δ = 0.3
p = 0.46
Categorical Analysis:
Survival and Health Status (KCCQ-OS) Combined

- TAVR: Transcatheter Aortic Valve Replacement
- SAVR: Surgical Aortic Valve Replacement

- 1 Month
 - P-value: 0.001
 - TAVR: 100%
 - SAVR: 80%

- 6 Months
 - P-value: 0.015
 - TAVR: 60%
 - SAVR: 40%

- 12 Months
 - P-value: 0.030
 - TAVR: 40%
 - SAVR: 20%

Legend:
- Dead
- Worse
- No Change
- Small Improvement
- Moderate Improvement
- Large Improvement
Cumulative Response Curves at 12 Months

Absolute Risk Difference 5.2%
Subgroup Analyses:
Difference in KCCQ-OS at 12 months

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Count</th>
<th>Mean Difference (95% CI)</th>
<th>P-Value for Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 75 Yr</td>
<td>512</td>
<td>1.5 (-0.6, 3.7)</td>
<td>0.654</td>
</tr>
<tr>
<td>≥ 75 Yr</td>
<td>431</td>
<td>2.2 (-0.1, 4.6)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>653</td>
<td>1.1 (-0.8, 3.0)</td>
<td>0.183</td>
</tr>
<tr>
<td>Female</td>
<td>290</td>
<td>3.4 (0.5, 6.3)</td>
<td></td>
</tr>
<tr>
<td>STS Risk Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 2</td>
<td>556</td>
<td>1.7 (-0.4, 3.7)</td>
<td>0.820</td>
</tr>
<tr>
<td>≥ 2</td>
<td>387</td>
<td>2.1 (-0.5, 4.6)</td>
<td></td>
</tr>
<tr>
<td>Ejection Fraction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 50</td>
<td>43</td>
<td>5.8 (-1.8, 13.3)</td>
<td>0.243</td>
</tr>
<tr>
<td>≥ 50</td>
<td>858</td>
<td>1.2 (-0.5, 2.8)</td>
<td></td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>161</td>
<td>0.3 (-3.6, 4.2)</td>
<td>0.440</td>
</tr>
<tr>
<td>Absent</td>
<td>781</td>
<td>2.0 (0.3, 3.8)</td>
<td></td>
</tr>
<tr>
<td>NYHA Class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class I/II</td>
<td>682</td>
<td>0.7 (-1.2, 2.5)</td>
<td>0.020</td>
</tr>
<tr>
<td>Class III/IV</td>
<td>261</td>
<td>5.0 (1.9, 8.1)</td>
<td></td>
</tr>
</tbody>
</table>
Exploratory Analysis: Effect of Peri-Procedural Complications

+ 30-Day Complications
- Stroke
- Bleeding
- Vasc. Complication
- Acute Kidney Injury
- New Atrial Fibrillation
- Pacemaker Implantation
- Moderate/Severe PVL

Difference in KCCQ-OS Scores at 12 months

1.8
1.3
Limitations

• Results may not be generalizable to other types of TAVR prostheses, alternative access routes or other patients excluded from PARTNER 3 trial

• Trial was unblinded, which could have led to provider or subject bias regarding expectations of treatment outcome

• Durability of health status differences between the cohorts beyond 1 year is unknown
Among patients with severe AS at low surgical risk, both TAVR and SAVR resulted in substantial health status benefits at 12 months despite most patients having NYHA class I or II symptoms at baseline.
Summary

• When compared with SAVR, TAVR was associated with significantly improved disease-specific health status not only at 1 month, but also at 6 and 12 months.

• Although the late health status benefit of TAVR was numerically small, it represents a subset of individual patients who derived substantially greater health status benefit from TAVR than SAVR:
 – \textit{NNT} = 19 to achieve a ≥ 20 point difference in 1 year KCCQ-OS

• Exploratory analyses suggest that differences in peri-procedural complication rates also accounted for a modest proportion of the late health status benefits associated with TAVR.
Conclusions

• Taken together with the clinical outcomes of the PARTNER 3 trial, these findings further support the use of TAVR in patients with severe AS at low surgical risk.

• Longer term follow up is necessary (and on-going) to determine whether the health status benefits of TAVR at 1 year are durable.