ACC-CCA Webinar Notes 3.18.20 (Epidemiology, CVD Treatment & Management)

Notes provided by University of Pittsburgh Medical Center FITs: **Agnes Koczo, MD**; **Ricardo Nieves, MD**; and **Amr F. Barakat, MD**.

As China is getting close to declare victory over COVID-19 (only 10-20 new cases a day across the country), here are some important lessons learned from the Chinese experience:

Chinese Guidelines for Diagnosis and Treatment of COVID-19 (7th Edition)

Virology and Epidemiology

- SARS-CoV-2 \rightarrow β genus, diameter 60-140 nm
- Shares 79% of nuclear identity of SARS-CoV-1 and 52% of that of MERS
- ACE-2 is the host cell receptor
- Affects alveolar type II cells primarily → lung pathology very similar to SARS and MERS (bilateral diffuse alveolar damage with cellular fibromyxoid exudates)
- Can also affect the heart, the liver, and the kidney
- Disinfection by Ethanol and UV light, not inactivated by Chlorhexidine
- Epidemic started in China, now Europe is the epicenter
- Mortality in China 2.3%, but ~5% in Italy
- Median incubation period 4 5.2 days (95% percentile is 12.5 days)
- Main source of infection is asymptomatic infected people
- Route of transmission is respiratory droplets, close contact with asymptomatic infected people, long-term environmental exposure to high viral aerosolized load, possibly fecal transmission too
- R₀ 2.2 2.95 (i.e. one infected person infects on average 2-3 healthy individuals)

Clinical Findings

- WHO diagnostic criteria (one epidemiological + 2 clinical findings OR 3 clinical findings)
 - Epidemiological criteria:
 - H/o travel to (or residence in) high risk areas
 - H/o contact with a confirmed or suspected case
 - Attendance of events where clusters of cases were reported
 - Clinical criteria:
 - Fever
 - Respiratory symptoms (e.g. cough and dyspnea)
 - Leucopenia/ Lymphopenia (unclear etiology but very characteristic with COVID-19)
- Frequency of symptoms and complications:
 - o Fever 98%
 - Cough 76% (mostly dry)
 - Lymphopenia 63% lowest at day 7, prolonged lymphopenia poor prognostic sign
 - Diarrhea 3%
 - Complications: ARDS 29%, acute cardiac injury 12%, AKI 7%, septic shock 7%, secondary bacterial infection 10%
- Average duration of dyspnea is 13 days, 45% of survivors still had cough on discharge

- Median duration of viral shedding is 20 days (up to 37 days)
- COVID vs Influenza
 - Similar constellation of symptoms recommend evaluation with RVP
 - Clinically, onset of COVID is slower than influenza which tends to be more abrupt
 - Additionally there appears to be less sputum production in COVID as compared to influenza
- Important observations from the Chinese experience:
 - O D-dimer > $1\mu g/ml \rightarrow independent risk factor for in-hospital death$
 - Very high D-dimer and FDP levels in severe cases → extensive intravascular microthrombi on autopsy (possibly related to high ACE-2 expression in vascular endothelial cells) → Anticoagulation should be started in severe COVID-19 cases if no contraindication (Chinese Expert opinion no supporting evidence)
 - Red flags for severity:
 - Progressive lymphopenia
 - Progressive increase in inflammatory biomarkers (IL-6 and CRP)
 - Progressive worsening infiltrates on CT scan
 - Elevated troponin and D-dimer

Diagnostic Tests

- RNA detection (RT-PCR) from nasopharyngeal swab, sputum, lower respiratory tract samples (best yield), blood and feces
- Serum antibody detection (IgM and IgG)
 - RNA testing alone has high false negative
 - When RNA testing + serum Ab testing → 98% sensitivity
 - Some cases tested positive for RNA again after discharge with negative test (unclear significance for now)
- Chest CT
 - Bilateral lung involvement
 - Peripheral distribution
 - Diffuse distribution
 - Ground glass opacities (can appear before the clinical onset of illness)
 - No septal thickening

Treatment

Isolation

- o All confirmed and suspected cases (did not specify but seems that they used <u>airborne</u> given use of N95 and mention of negative pressure rooms)
- PPE for healthcare workers → N95 when taking care of suspected or confirmed cases / Surgical masks everywhere else in the hospital (ALL THE TIME)
- Supportive therapy

- Sufficient caloric intake (many patients had hypoproteinemia)
- Water and electrolytes

Antiviral therapy

- So far, no specific antiviral for SARS-CoV-2
- Clinically evaluated antivirals:
 - Lopinavir-ritonavir monotherapy (LOTUS China, trial completed, just published, no therapeutic benefit observed beyond standard care
 https://www.nejm.org/doi/full/10.1056/NEJMoa2001282?query=TOC) 1st line therapy in China during the epidemic surge
 - Remdesivir (CAP China Remdesivir 1 and 2, ongoing trials for mild-mod and severe pneumonia)
- Other antimicrobials without supportive clinical data:
 - Ribavirin
 - Chloroquine
 - Arbidol
 - Convalescent plasma therapy
 - Favipiravir (favilavir)

Immune therapy

- Targeting the host immune response to the virus
- Tocilizumab IL-6 monoclonal antibody for severe cases

Steroids

- Controversial
- Central role for inflammation has been determined in the pathophysiology of COVID-19
- Used for rapid deterioration in oxygenation and radiologic findings
- o Low to moderate doses only max 1-2 mg/kg/day of methylprednisone
- o For 3-5 days only

Discharge Criteria

- Normal temperature for >3 days
- Improvement of respiratory symptoms
- 2 consecutive negative respiratory specimens at least 24 hours apart

COVID-19 and Cardiovascular Disease

COVID-19 patients with underlying cardiovascular disease have the highest fatality rate (10.5%)

Pathology of Cardiac Damage

- Mononuclear inflammatory infiltrate
- Endothelial shedding
- Intravascular thrombosis
- SARS-CoV-2 inclusions can be seen

Mechanisms of Acute Cardiac Damage

- ACE-2-mediated direct cellular damage
- Hypoxia-induced myocardial damage
- Microvascular damage
- SIRS

Clinical Presentations and Complications

- Arrhythmias (17%)
- Acute cardiac injury (elevated high-sensitivity troponin) (12%)
- Elevated regular troponin or CK-MB (7.2%) → occurs in severe cases (mostly negative in mild and moderate cases) → mortality 49%
- Fulminant myocarditis can occur (they presented a case with regional STE [inferior leads], negative coronary angiogram, initial drop in EF to 27%, and complete recovery with supportive therapy)
- STEMI can also occur as a complication
- Important observations:
 - ↓ pericardial adipose tissue correlates with COVID-19 severity
 - o There may be evidence of chronic cardiovascular damage following COVID-19

Management of Cardiac Medications

- ACEI/ ARBs → dilemma:
 - The good: ACEI/ARBs → ↓ Angiotensin II activity → improvement of lung inflammatory response
 - The bad: ACEI/ARBs → ↑ACE-2 activity → increase viral cellular bindings and facilitate infection
 - CV perspective:
 - They are essential medications from a cardiovascular standpoint
 - For COVID-19 mortality, HTN had an OR of 3.05
 - → The current Chinese recommendation is NOT to stop them in COVID-19 patients
- Antiplatelets → continue
- Statins → continue and monitor liver functions closely
- BB → selective B1 blockers are recommended in the absence of airways spasm

Important Considerations with Antiviral Medications

- Antiviral interaction with cardiovascular drugs (.....I missed the examples....)
- Lopinavir/ritonavir (the first-line antiviral therapy in China) <u>can cause complete heart block and dilated cardiomyopathy</u>

Management of Acute MI and Protection of Cardiologists during COVID-19

Important general rules:

- Nearby therapy (<u>treat at the nearest medical center</u> avoid transfers as possible)
- Safe protection (if fever or suspicion of COVID-19 in AMI patients → test immediately → isolate)
- Travel and exposure history should be assessed in all STEMI patients

- Thrombolysis first (rather than primary PCI) in confirmed or suspected COVID-19 patients. Remember: PCI less widely available in China than in US, and thus thrombolysis remains a more standard therapy there.
- Coronary angiography for suspected or confirmed COVID-19 patients should be in designated Cath labs (with negative pressure if available)
- In suspected or confirmed COVID-19 cases who need cardiology input → <u>use remote</u> cardiology consultation as possible (virtual or telephone)
- Avoid unnecessary hospitalizations

Important Final Remarks

- The most dangerous thing about this epidemic from the Chinese perspective is the transmission by asymptomatic or mildly symptomatic infected individuals.
- We learned from Wuhan and Italy that young healthy people can also get severe disease and die
- Many infections in healthcare professionals (in China → 3.8% of the cases are HC workers, of those, 15% were severe/critically ill, 5 deaths)
- Observation from Wuhan is that the rate of *co-infection with other respiratory viruses especially influenza is high*. Dr Bin Cao said "As if they always came together" when referring to influenza pneumonia and COVID-19. This has huge implications since many US hospital protocols now say that if RVP is +ve then no need to test for SARS-CoV-2.
- Best way to prepare from a hospital perspective is DIAGNOSIS (you need to know who's infected and who's not once they present to clinic or ED → RNA testing IMMEDIATELY) – to ensure proper isolation and admission to appropriate wards/ICU.
- Changes to hospitals workflow in Wuhan:
 - All outpatient clinics were closed during the epidemic surge
 - O All outpatient visits were performed virtually or by telephone (if medical attention is needed \rightarrow ED)
 - o Marked increase in the use of thrombolysis (vs primary PCI) for STEMI
- Social isolation/ distancing is EFFECTIVE → needs to be done for at least 2-4 weeks
- Best way to think about the situation now is: <u>No more normal life, it's COVID-19 pandemic life</u> (things that are not normally acceptable or feasible should be now, to face the pandemic)