STEMI and NSTEMI-ACS:
The Evolving Antithrombotic Agents and Combinations
The Challenge of a High Benefit / Bleeding Ratio

Deepak L. Bhatt, MD, MPH

Executive Director of Interventional Cardiovascular Programs, BWH Heart and Vascular Center
Senior Investigator, TIMI Study Group
Professor of Medicine, Harvard Medical School
Disclosures for Dr. Bhatt

Advisory Board: Elsevier Practice Update Cardiology, Medscape Cardiology, Regado Biosciences; Board of Directors: Boston VA Research Institute, Society of Cardiovascular Patient Care; Chair: American Heart Association Get With The Guidelines Steering Committee; Data Monitoring Committees: Duke Clinical Research Institute, Harvard Clinical Research Institute, Mayo Clinic, Population Health Research Institute; Honoraria: American College of Cardiology (Senior Associate Editor, Clinical Trials and News, ACC.org), Belvoir Publications (Editor in Chief, Harvard Heart Letter), Duke Clinical Research Institute (clinical trial steering committees), Harvard Clinical Research Institute (clinical trial steering committee), HMP Communications (Editor in Chief, Journal of Invasive Cardiology), Journal of the American College of Cardiology (Associate Editor; Section Editor, Pharmacology), Population Health Research Institute (clinical trial steering committee), Slack Publications (Chief Medical Editor, Cardiology Today’s Intervention), WebMD (CME steering committees); Other: Clinical Cardiology (Deputy Editor); Research Funding: Amarin, AstraZeneca, Bristol-Myers Squibb, Eisai, Ethicon, Forest Laboratories, Ischemix, Medtronic, Pfizer, Roche, Sanofi Aventis, The Medicines Company; Unfunded Research: FlowCo, PLx Pharma, Takeda.

This presentation discusses off-label and/or investigational uses of various drugs and devices.
Intensifying Platelet Inhibition — Navigating between Scylla and Charybdis

Deepak L. Bhatt, M.D.
Potential Relationship Between Bleeding and Mortality

Major Bleeding

- Hypotension
- Cessation of DAPT
- Transfusion

Ischemia ↔ Stent Thrombosis ↔ Inflammation

Mortality

Bhatt DL. In Braunwald: Heart Disease Online 2005.
OR and attributable risk for baseline factors associated with death by 12 months

Myocardial infarction definitions and late mortality

- Percentage attributable fraction
- Odds Ratio

- Odds ratio is represented by dotted lines; attributable risk by shaded area

DAPT: Design

12 mos. 18 mos.

DES n = 23,210
BMS n = 2,985
Completed Enrollment 2011

All patients on aspirin + open-label thienopyridine therapy for 12 months

1:1 Randomization at month 12

50% of patients receive aspirin + placebo

50% of patients continue on Dual Antiplatelet Therapy

Total 33 month patient evaluation including additional 3-month follow-up

www.daptstudy.org www.clinicaltrials.gov – NCT00977938
Co-Primary Effectiveness End Point
Stent Thrombosis and MACCE

Mauri L, et al. NEJM 2014

CVD/MI/Stroke
12-30 Months:
HR 0.71 (0.59-0.85)
4.3% vs. 5.9% P<0.001

ST 12-30 Months:
HR 0.29 (0.17-0.48)
0.4% vs. 1.4% P<0.001

Cumulative Incidence of Stent Thrombosis and MACCE

Thienopyridine vs Placebo

At Risk

<table>
<thead>
<tr>
<th>Treatment Ends</th>
<th>Study Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Thienopyridine</td>
<td>4934</td>
</tr>
<tr>
<td>Placebo</td>
<td>4941</td>
</tr>
</tbody>
</table>

Mauri L, et al. NEJM 2014
Primary Safety End Point (Moderate or Severe Bleeding): 12-30 Months

- Moderate or Severe: 0.001
- Moderate: 0.004
- Severe: 0.15
- BARC Type 2: <0.001
- BARC Type 3: <0.001
- BARC Type 5: 0.38

Thienopyridine (N=4710) vs Placebo (N=4649)
Trials of DAPT Duration

Ongoing trials in green

OPTIMIZE Trial: NACCE at 1 Year (All-Cause Death, MI, Stroke, Major Bleeding)

Log-Rank $P = 0.84$
HR 1.03 (0.77 – 1.38)

Non-inferiority P-value = 0.002

PEGASUS – TIMI 54

Stable pts with history of MI 1-3 yrs prior + ≥1 additional atherothrombosis risk factor*

N ~ 21,000

RANDOMIZE DOUBLE BLIND

Ticagrelor 90 mg bid

Ticagrelor 60 mg bid

Placebo

Follow-up Visits
Q4 mos for 1st yr, then Q6 mos

Min 12 mos and median 26 mos follow-up Event-driven trial

Primary Efficacy Endpoint: CV Death, MI, or Stroke
Primary Safety Endpoint: TIMI Major Bleeding

* Age >65 yrs, diabetes, 2nd prior MI, multivessel CAD, or chronic non-end stage renal dysfunction

Planned treatment with ASA 75 – 150 mg & Standard background care
THEMIS

Design and main eligibility criteria

- **Primary endpoint**: Composite of CV death, MI or stroke
- **Secondary endpoint**: Composite of all-cause death, MI or stroke; CV death; All-cause death
- **Primary safety**: TIMI Major bleeding

- **Type 2 diabetes; men and women ≥ 50 years**
 - ≥ 6 months glucose lowering drug treatment
 - At high risk for CV events*
 - No previous MI or stroke
 - No planned use of ADP receptor antagonist or planned revascularisation

- **Ticagrelor**
 - Placebo

- **Event driven study; 750 CV events required. 2 years mean follow-up. (n=17 000)**

- **Low-dose ASA background therapy based on individual risk**

 * At high risk of CV events defined as history of PCI or CABG or angiographic evidence of ≥ 50% lumen stenosis of at least 1 coronary artery

http://www.clinicaltrials.gov/show/NCT01991795
Primary Outcome
CV Death, MI, Ischemic Stroke

Apixaban 279 (7.5%)
Placebo 293 (7.9%)
HR 0.95; 95% CI 0.80-1.11; p=0.509

Alexander et al. NEJM 2011.
TIMI Major Bleeding

Apixaban 48 (1.3%)
Placebo 18 (0.5%)
HR 2.59; 95% CI 1.50–4.46; p=0.001

Alexander et al. NEJM 2011.
Study Chairs: Drs. Harrington and Wallentin
TIMI Major Bleeding
Subgroups

<table>
<thead>
<tr>
<th>Subject Group</th>
<th>n/N</th>
<th>Interaction P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiplatelet therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual</td>
<td>55/5864</td>
<td></td>
</tr>
<tr>
<td>Single*</td>
<td>9/1451</td>
<td>0.25</td>
</tr>
<tr>
<td>ACS type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEMI</td>
<td>25/2899</td>
<td></td>
</tr>
<tr>
<td>Non-STEMI</td>
<td>33/3042</td>
<td>0.89</td>
</tr>
<tr>
<td>UA*</td>
<td>6/1326</td>
<td></td>
</tr>
<tr>
<td>ACS treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI</td>
<td>34/3198</td>
<td></td>
</tr>
<tr>
<td>CABG*</td>
<td>2/40</td>
<td>0.78</td>
</tr>
<tr>
<td>None</td>
<td>28/4077</td>
<td></td>
</tr>
<tr>
<td>Apixaban dose (or matching placebo)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 mg BID</td>
<td>57/6693</td>
<td></td>
</tr>
<tr>
<td>2.5 mg BID*</td>
<td>7/622</td>
<td>0.35</td>
</tr>
<tr>
<td>Geographic region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia/Pacific*</td>
<td>5/1302</td>
<td></td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>121962</td>
<td>0.4</td>
</tr>
<tr>
<td>North America</td>
<td>14/1493</td>
<td></td>
</tr>
<tr>
<td>South America*</td>
<td>9/776</td>
<td></td>
</tr>
<tr>
<td>Western Europe</td>
<td>24/1511</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td><65</td>
<td>22/3021</td>
<td></td>
</tr>
<tr>
<td>65–74</td>
<td>30/2828</td>
<td>0.27</td>
</tr>
<tr>
<td>>75</td>
<td>12/1466</td>
<td></td>
</tr>
<tr>
<td>Level of renal impairment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe or moderate</td>
<td>17/1273</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>23/2780</td>
<td>0.14</td>
</tr>
<tr>
<td>Normal</td>
<td>23/2864</td>
<td></td>
</tr>
<tr>
<td>Number of risk factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤2</td>
<td>17/3265</td>
<td></td>
</tr>
<tr>
<td>>2</td>
<td>47/4050</td>
<td>0.16</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>24/3832</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>40/3483</td>
<td>0.24</td>
</tr>
</tbody>
</table>

*HR not calculated for subgroups with ≤10 events

Alexander et al. NEJM 2011.

Study Chairs: Drs. Harrington and Wallentin
Primary Efficacy Endpoint:
CV Death / MI / Stroke

Rivaroxaban (both doses)

Placebo

No. at Risk
Placebo 5113 4307 3470 2664 1831 1079 421
Rivaroxaban 10292 8502 6753 5137 3554 2084 831

Estimated Cumulative Incidence (%)
Mega et al. NEJM 2011.
Stent Thrombosis
ARC Definite, Probable, Possible

Rivaroxaban (both doses)

HR 0.69 (0.51 - 0.93)
mITT p = 0.016
ITT p = 0.008

2 Yr KM Estimate
Placebo 2.9%
Rivaroxaban 2.3%

Estimated Cumulative incidence (%)

Gibson CM et al. JACC 2013
Efficacy Endpoints: Very Low Dose 2.5 mg BID
Patients Treated with ASA + Thienopyridine

- CV Death / MI / Stroke
 - Placebo: HR 0.85 (mITT p=0.04, ITT p=0.01)
 - Rivaroxaban: NNT = 71

- Cardiovascular Death
 - Placebo: HR 0.62 (mITT p<0.001, ITT p<0.001)
 - Rivaroxaban: NNT = 59

- All Cause Death
 - Placebo: HR 0.64 (mITT p<0.001, ITT p<0.001)
 - Rivaroxaban: NNT = 56

Mega et al. NEJM 2011.
TREATMENT-EMERGENT FATAL BLEEDS AND ICH

- Placebo
- 2.5 mg Rivaroxaban
- 5.0 mg Rivaroxaban

p=NS for Riva vs Placebo
p=NS for Riva 5 vs Placebo
p=NS for Riva 2.5 vs Placebo
p=0.044 for Riva 2.5 vs 5
p=0.009 for Riva vs Placebo
p= 0.005 Riva 5 vs Placebo
P=0.037 for Riva 2.5 vs Placebo
p=0.44 for Riva 2.5 vs 5

Mega et al. NEJM 2011.
All NOACS: Stroke or SEE

- RE-LY [150 mg]
 - Risk Ratio (95% CI): 0.66 (0.53 - 0.82)

- ROCKET AF
 - Risk Ratio (95% CI): 0.88 (0.75 - 1.03)

- ARISTOTLE
 - Risk Ratio (95% CI): 0.80 (0.67 - 0.95)

- ENGAGE AF-TIMI 48 [60 mg]
 - Risk Ratio (95% CI): 0.88 (0.75 - 1.02)

Combined [Random Effects Model]
- N=58,541
 - Risk Ratio (95% CI): 0.81 (0.73 - 0.91)
 - p=<0.0001

Heterogeneity p=0.13

Secondary Efficacy Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Risk Ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic Stroke</td>
<td>0.92 (0.83 - 1.02)</td>
<td>p=0.10</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>0.49 (0.38 - 0.64)</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>MI</td>
<td>0.97 (0.78 - 1.20)</td>
<td>p=0.77</td>
</tr>
<tr>
<td>All-Cause Mortality</td>
<td>0.90 (0.85 - 0.95)</td>
<td>p=0.0003</td>
</tr>
</tbody>
</table>

Heterogeneity p=NS for all outcomes

All NOACS: Major Bleeding

- **RE-LY** [150 mg]
 - Risk Ratio (95% CI): 0.94 (0.82 - 1.07)

- **ROCKET AF**
 - Risk Ratio (95% CI): 1.03 (0.90 - 1.18)

- **ARISTOTLE**
 - Risk Ratio (95% CI): 0.71 (0.61 - 0.81)

- **ENGAGE AF-TIMI 48** [60 mg]
 - Risk Ratio (95% CI): 0.80 (0.71 - 0.90)

- **Combined** [Random Effects Model]
 - Risk Ratio (95% CI): 0.86 (0.73 - 1.00)

N=58,498

Heterogeneity p=0.001

Secondary Safety Outcomes

Risk Ratio (95% CI)

ICH
- Risk Ratio: 0.48 (0.39 - 0.59)
- p-value: <0.0001

GI Bleeding
- Risk Ratio: 1.25 (1.01 - 1.55)
- p-value: 0.043

Heterogeneity
- ICH, p=0.22
- GI Bleeding, p=0.009

Rivaroxaban Use in Patients With AF Undergoing PCI: PIioneer AF-PCI

- **Primary endpoint:** TIMI major, minor, and bleeding requiring medical attention
- **Secondary endpoint:** CV death, MI, stroke, and stent thrombosis

- **2100 patients with NVAF**
- **No prior stroke/TIA**
- **PCI with stent placement**

- **Randomize**
 - ≤72 hours after sheath removal

- **End of treatment at 12 months**

- Rivaroxaban 15 mg qd* Clopidogrel 75 mg qd†
 - 1,6, or 12 months

- Rivaroxaban 2.5 mg bid Clopidogrel 75 mg qd† Aspirin 75-100 mg qd‡
 - 1,6, or 12 months

- VKA (target INR 2.0-3.0) Clopidogrel 75 mg qd† Aspirin 75-100 mg qd
 - 1,6, or 12 months

- VKA (target INR 2.0-3.0) Aspirin 75-100 mg qd

Rivaroxaban dosed at 10 mg once daily in patients with CrCl of 30 to <50 mL/min.

†Alternative P2Y₁₂ inhibitors: 10 mg once-daily prasugrel or 90 mg twice-daily ticagrelor.

‡Low-dose aspirin (75-100 mg/d).
Paroxysmal, persistent or permanent NVAF
(PCI with stenting [BMS or DES] elective or ACS)

Screening

Worldwide Event Driven Trial

Dabigatran 150mg BID + P2Y12 inhibitor

Dabigatran 110mg BID + P2Y12 inhibitor

Warfarin (INR 2.0-3.0) + P2Y12 inhibitor + ASA

3M 6M 9M 12M 15M 18/24/30M or EOT

1° End Point
Thrombotic Event Rate
(Death + MI + Stroke/SE)

Plus
Clinically Relevant Bleeding Rate
(ISTH Major)
Rivaroxaban on top of aspirin and versus aspirin in patients with coronary and/or peripheral artery disease

Rivaroxaban 2.5 mg bid + Aspirin 100 mg od

Rivaroxaban 5 mg bid

Aspirin 100 mg od

Screening Period

Run-in period

Primary outcome: MI, Stroke, CV death (n=2,200)
Mean follow up: 3-4 years
Prior MI, CVA, or PAD

Standard care including oral antiplt rx

RANDOMIZE 1:1 DOUBLE BLIND

Vorapaxar 2.5 mg/d

Placebo

Stratified by:
1) Qualifying athero
2) Use of thienopyridine

Follow up Visits
Day 30, Mo 4, Mo 8, Mo 12
Q6 months

Final Visit

Key Inclusion:
1) Type 1 MI: 2 wks - 12 mo
2) Ischemic CVA: 2 wk - 12 mo
3) PAD: claudication + abnl ABI or prior revasc

DSMB observed ↑ risk of ICH in Pts w/ stroke → Rec stopping study drug in Pts w/ any h/o stroke
Primary Efficacy Evaluation

CV Death, MI, or Stroke

Hazard Ratio 0.87; 95% CI 0.80 to 0.94
$p < 0.001$

- **Placebo**
 - N = 26449
 - Median f/u: 2.5 years
 - 10.5% at 1080 days

- **Vorapaxar**
 - 9.3% at 1080 days

Event Rate (%)

<table>
<thead>
<tr>
<th>Event</th>
<th>Vora</th>
<th>Plac</th>
<th>HR</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV Death</td>
<td>2.7</td>
<td>3.0</td>
<td>0.89</td>
<td>0.15</td>
</tr>
<tr>
<td>MI</td>
<td>5.2</td>
<td>6.1</td>
<td>0.83</td>
<td>0.001</td>
</tr>
<tr>
<td>Stroke</td>
<td>2.8</td>
<td>2.8</td>
<td>0.97</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Morrow DA et al. *NEJM* 2012;366:1404-13
Major Bleeding Endpoints

3-yr KM rate (%)

- **Placebo**
 - TIMI Non-CABG Major: ARD 2.0%, HR 1.87, P<0.001
 - ICH: ARD 1.5%, HR 2.55, P<0.001
 - Fatal: ARD 0.2%, HR 1.48, P=0.46

- **Vorapaxar**
 - TIMI Non-CABG Major: ARD 0.2%, HR 1.55, P=0.049
 - ICH: ARD 0.2%, HR 1.44, P=0.30
 - Fatal: ARD 0.1%

Prior Stroke
- n = 5746

No Hx of Stroke
- n = 20699

Morrow DA et al. *NEJM* 2012;366:1404-13
Primary Efficacy Evaluation
Low Bleeding Risk Cohort* (N= 14,909)

CV Death, MI, or Stroke

CV Death

*Age <75 y, no h/o stroke/TIA, wt ≥60 kg

Efficacy Early and Late
Prior MI Cohort

Days 0 to 360

CV Death / MI / Stroke (%)

Placebo
4.0%

Vorapaxar
3.2%

HR 0.79
p = 0.003

Day 360 to 1080

CV Death / MI / Stroke (%)

Placebo
6.5%

Vorapaxar
5.5%

HR 0.82
p = 0.004

Bonaca et al. JACC 2014

Stent Thrombosis
By Randomized Treatment

ARC Definite Stent Thrombosis

Placebo
- Event Rate: 1.4%
- Hazard Ratio (HR): 0.71 (0.52 – 0.98)
- P-value: 0.04

Vorapaxar
- Event Rate: 1.1%

Days from randomization

Event Rate (%)
Vorapaxar and Limb Vascular Efficacy

Hospitalization for Acute Limb Ischemia

- Pre-specified, adjudicated
- N = 3767
- Placebo: 3.9%
- Vorapaxar: 2.3%
- Hazard Ratio 0.58
- 95% CI 0.39 to 0.86
- p = 0.006

Peripheral Revascularization

- Prespecified, Investigator
- Placebo: 22.2%
- Vorapaxar: 18.4%
- Hazard Ratio 0.84
- 95% CI 0.73 to 0.97
- p = 0.017

Incidence of New Ischemic Stroke

Patients without history of Stroke/TIA
N = 20,170

Ischemic stroke HR 0.57, p<0.001
Hemorrhagic stroke HR 2.78, p=0.049
Overall stroke HR 0.68, p=0.005

P<0.001
Patients with Prior MI and No Hx of Stroke or TIA

Risk Differences for 1000 Patients per 3 years- Vora vs. PBO

First Serious (Irreversible) Events

Events/1000 Patient/3 Years

CV Death MI Stroke CV Death Fatal Bleeding Non-Fatal ICH
-25 -14 -6 -5 0 +1

Braunwald E. Source: US FDA website - 20140115 CRDAC-S1-03
Conclusions

- Delicate balance between preventing thrombosis and provoking bleeding – key is appropriate patient selection
- Prasugrel best used in ACS after the coronary anatomy is defined
- Ticagrelor of benefit across the full spectrum of ACS
- Vorapaxar of benefit in post-MI and PAD patients
- Several trials are ongoing which will affect care of ACS, PCI, Afib and provide insight into the optimal combinations/durations of single, double, and triple anti-thrombotic therapies
Thank You!

Deepak L. Bhatt, MD, MPH
Executive Director of Interventional Cardiovascular Programs,
BWH Heart & Vascular Center
Professor of Medicine,
Harvard Medical School
1 (857) 307-1992
dbhatt@partners.org
Study population and design

- Documented evidence of STEMI
- Planned for angioplasty (PCI)
 - onset of ischaemic symptoms within 6 h
 - initially managed by ambulance physician/personnel; also concerning patients not pre-treated for STEMI in emergency rooms of non-PCI hospitals

STE-ACS planned for PCI (N = 1862)

- Randomised, double-blind
- Ticagrelor 180 mg loading dose
- Pre-hospital
- Placebo loading dose
- In-Hospital
- Ticagrelor 180 mg loading dose

Primary Objectives

- ≥ 70% ST-segment elevation resolution pre-PCI
- OR
- TIMI flow grade 3 of MI culprit vessel at initial angiography

- Ticagrelor 90 mg/bid 30 days

1st Co-primary endpoint
No ST-segment resolution (≥70%)

Montalescot G et al. NEJM 2014
2nd Co-primary endpoint
No TIMI 3 flow in infarct-related artery

Montalescot G et al. NEJM 2014
Definite stent thrombosis up to 30 days

Montalescot G et al. NEJM 2014
TRITON – TIMI 38
CV Death, MI, Stroke

Primary Endpoint (%)

Prasugrel
HR 0.80
P=0.0003
HR 0.77
P=0.0001

Clopidogrel
HR 0.81
(0.73-0.90)
P=0.0004
NNT= 46

CV Death, MI, Stroke

ITT= 13,608
LTFU = 14 (0.1%)

Slide courtesy of Dr. Elliott Antman

TRITON-TIMI 38: Stent Thrombosis (ARC Definite + Probable)

Endpoint (%)

Any Stent at Index PCI
N = 12,844

Prasugrel
HR 0.48
P < 0.0001
NNT = 77

Clopidogrel
2.4 (142)

Slide courtesy of Dr. Elliott Antman
TRITON-TIMI 38: Bleeding Events

Safety Cohort

(N=13,457)

<table>
<thead>
<tr>
<th></th>
<th>Clopidogrel</th>
<th>Prasugrel</th>
<th>ICH in Pts w Prior Stroke/TIA (N=518)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMI Major Bleeds</td>
<td>1.8%</td>
<td>2.4%</td>
<td>Clop 0 (0) % Pras 6 (2.3)% (P=0.02)</td>
</tr>
<tr>
<td>ARD 0.6%</td>
<td></td>
<td>HR 1.32</td>
<td></td>
</tr>
<tr>
<td>P=0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNH=167</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life Threatening</td>
<td>0.9%</td>
<td>1.4%</td>
<td></td>
</tr>
<tr>
<td>ARD 0.5%</td>
<td></td>
<td>HR 1.52</td>
<td></td>
</tr>
<tr>
<td>P=0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonfatal</td>
<td>0.9%</td>
<td>1.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>ARD 0.2%</td>
<td></td>
<td>HR 1.52</td>
<td></td>
</tr>
<tr>
<td>P=0.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatal</td>
<td>0.4%</td>
<td></td>
<td>0.3%</td>
</tr>
<tr>
<td>ARD 0.3%</td>
<td></td>
<td>HR 1.52</td>
<td></td>
</tr>
<tr>
<td>P=0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICH</td>
<td>0.3%</td>
<td>0.3%</td>
<td>0.3%</td>
</tr>
<tr>
<td>ARD 0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P=0.74</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slide courtesy of Dr. Elliott Antman

TRITON TIMI-38: Net Clinical Benefit

Bleeding Risk Subgroups

Post-hoc analysis

<table>
<thead>
<tr>
<th>Prior Stroke / TIA</th>
<th>Yes</th>
<th>No</th>
<th>Risk (%)</th>
<th>Risk (%)</th>
<th>Risk (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+ 54</td>
<td>-16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P_{int} = 0.006</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>>=75</td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 75</td>
<td></td>
<td>+3</td>
<td>P_{int} = 0.18</td>
<td>-16</td>
</tr>
<tr>
<td>Wgt</td>
<td>< 60 kg</td>
<td></td>
<td>+3</td>
<td>P_{int} = 0.36</td>
<td>-14</td>
</tr>
<tr>
<td></td>
<td>>= 60 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OVERALL

<table>
<thead>
<tr>
<th>HR</th>
<th>Prasugrel Better</th>
<th>Clopidogrel Better</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

ACCOAST: Primary Efficacy Endpoint (All Patients)

ACCOAST: Primary Safety Endpoint (All Patients)

PLATO: CV Death, MI, or Stroke

No. at risk

<table>
<thead>
<tr>
<th></th>
<th>Clopidogrel</th>
<th>Ticagrelor</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,291</td>
<td>8,362</td>
<td>8,124</td>
</tr>
<tr>
<td>8,333</td>
<td>8,460</td>
<td>8,219</td>
</tr>
<tr>
<td>8,521</td>
<td>8,628</td>
<td>8,743</td>
</tr>
<tr>
<td>8,219</td>
<td>8,124</td>
<td>5,096</td>
</tr>
<tr>
<td>6,743</td>
<td>6,743</td>
<td>4,147</td>
</tr>
<tr>
<td>5,161</td>
<td>5,096</td>
<td></td>
</tr>
</tbody>
</table>

Days after randomisation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>60</th>
<th>120</th>
<th>180</th>
<th>240</th>
<th>300</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clopidogrel</td>
<td>11.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ticagrelor</td>
<td>9.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cumulative incidence (%)

HR 0.84 (95% CI 0.77–0.92), p=0.0003

Study Chairs: Drs. Harrington and Wallentin
PLATO: Secondary Efficacy Endpoints

Myocardial infarction

- Clopidogrel: 6.9%
- Ticagrelor: 5.8%

Cumulative incidence (%)

HR 0.84 (95% CI 0.75–0.95), p=0.005

Cardiovascular death

- Clopidogrel: 5.1%
- Ticagrelor: 4.0%

Cumulative incidence (%)

HR 0.79 (95% CI 0.69–0.91), p=0.001

No. at risk

<table>
<thead>
<tr>
<th></th>
<th>Ticagrelor</th>
<th>Clopidogrel</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 days</td>
<td>9,333</td>
<td>9,291</td>
</tr>
<tr>
<td>180 days</td>
<td>8,678</td>
<td>8,560</td>
</tr>
<tr>
<td>270 days</td>
<td>8,520</td>
<td>8,405</td>
</tr>
<tr>
<td>360 days</td>
<td>8,279</td>
<td>8,177</td>
</tr>
</tbody>
</table>

Days after randomisation

<table>
<thead>
<tr>
<th></th>
<th>Clopidogrel</th>
<th>Ticagrelor</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 days</td>
<td>6,703</td>
<td>6,703</td>
</tr>
<tr>
<td>180 days</td>
<td>6,796</td>
<td>6,796</td>
</tr>
<tr>
<td>270 days</td>
<td>6,796</td>
<td>6,796</td>
</tr>
<tr>
<td>360 days</td>
<td>6,796</td>
<td>6,796</td>
</tr>
</tbody>
</table>

Study Chairs: Drs. Harrington and Wallentin
PLATO: Stratification by Invasive vs Conservative Strategy

Number at risk

<table>
<thead>
<tr>
<th>Invasive</th>
<th>Ticagrelor</th>
<th>Clopidogrel</th>
<th>Non-invasive</th>
<th>Ticagrelor</th>
<th>Clopidogrel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days after randomization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>6732</td>
<td>6676</td>
<td>2601</td>
<td>2615</td>
<td>2392</td>
</tr>
<tr>
<td>60</td>
<td>6236</td>
<td>6129</td>
<td>2392</td>
<td>2392</td>
<td>2392</td>
</tr>
<tr>
<td>120</td>
<td>6134</td>
<td>6034</td>
<td>2326</td>
<td>2328</td>
<td>2328</td>
</tr>
<tr>
<td>180</td>
<td>5972</td>
<td>5881</td>
<td>2247</td>
<td>2243</td>
<td>2243</td>
</tr>
<tr>
<td>240</td>
<td>4889</td>
<td>4815</td>
<td>1854</td>
<td>1835</td>
<td>1835</td>
</tr>
<tr>
<td>300</td>
<td>3735</td>
<td>3680</td>
<td>1426</td>
<td>1416</td>
<td>1416</td>
</tr>
<tr>
<td>360</td>
<td>3048</td>
<td>2965</td>
<td>1099</td>
<td>1109</td>
<td>1109</td>
</tr>
</tbody>
</table>

Invasive

HR, 0.84, 95% CI: (0.75–0.94)

Non-invasive

HR, 0.85, 95% CI: (0.73–1.0)

James S et al. *BMJ* 2011;342:d3527
Major Bleeding: Non-CABG vs CABG

Study Chairs: Drs. Harrington and Wallentin

- **Non-CABG PLATO major bleeding**: 4.5% vs 3.8% (p=0.026)
- **Non-CABG TIMI major bleeding**: 2.8% vs 2.2% (p=0.025)
- **CABG PLATO major bleeding**: 7.4% vs 7.9% (NS)
- **CABG TIMI major bleeding**: 5.3% vs 5.8% (NS)