Atrial Fibrillation: Preventing Stroke with LA Appendage Closure

Does It Improve Mortality Too?

Vivek Y. Reddy, MD
Helmsley Trust Professor of Medicine
Director, Cardiac Arrhythmia Service
The Mount Sinai Hospital

vivek.reddy@mountsinai.org
Disclosures

- **Grant support and/or Consultant:**
 - Boston Scientific Inc, Coherex Inc, St Jude Medical Inc

- I will be discussing non-approved catheter devices.
Overview

• The Watchman Trials
 – Introduction
 – Safety of LAA Closure
 – Efficacy of LAA Closure
 • PROTECT-AF
 • Combined Analysis of All Randomized Data
 – LAA Closure in Contraindicated Patients

• Context
Overview

• The Watchman Trials
 – Introduction
 – Safety of LAA Closure
 – Efficacy of LAA Closure
 • PROTECT-AF
 • Combined Analysis of All Randomized Data
 – LAA Closure in Contraindicated Patients

• Context
Stroke Prophylaxis in AF

- Difficulties with Warfarin use
 - Frequent Monitoring
 - Difficulty in Compliance (TTR 48-63%)
 - Drug / Diet Interactions
 - Bleeding Risk (ICH)
 - Risks in Elderly (Falls, Poly-pharmacy)

- Autopsy & TEE data implicate LAA

- LAA Closure Devices

Watchman

- Cardiac Plug
- Wavecrest
- Lariat

In the US, WATCHMAN is an investigational device, limited by applicable law to investigational use only and not available for sale. CE Mark 2005
LAA Closure Clinical Trials

PROTECT AF / PREVAIL / CAP / CAP-2 / ASAP

<table>
<thead>
<tr>
<th></th>
<th>PROTECT AF</th>
<th>CAP</th>
<th>PREVAIL</th>
<th>CAP-2</th>
<th>ASAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Warfarin-Eligible</td>
<td>Warfarin-Eligible</td>
<td>Warfarin-Eligible</td>
<td>Warfarin-Eligible</td>
<td>Warfarin-In Eligible</td>
</tr>
<tr>
<td>Enrolled</td>
<td>800</td>
<td>566</td>
<td>461</td>
<td>579</td>
<td>150</td>
</tr>
<tr>
<td>Roll-in</td>
<td>93</td>
<td>--</td>
<td>54</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Randomized</td>
<td>707</td>
<td>--</td>
<td>407</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Watchman</td>
<td>463</td>
<td>(566)</td>
<td>269</td>
<td>(579)</td>
<td>(150)</td>
</tr>
<tr>
<td>Control</td>
<td>244</td>
<td>--</td>
<td>138</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>New Operators / Sites</td>
<td>--</td>
<td>--</td>
<td>39.1% / 38.8%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Follow-Up Pt-Yrs (Yrs)</td>
<td>2717 (4.0 y)</td>
<td>2022 (3.6 y)</td>
<td>860 (1.9 y)</td>
<td>332 (0.6 y)</td>
<td>206 (1.4 y)</td>
</tr>
</tbody>
</table>
Watchman Clinical Trials
Patients were at High Risk

PROTECT-AF & PREVAIL
Design & Overview

• Randomized FDA-IDE Trials
 – Can the WATCHMAN device replace Warfarin?

• Efficacy Endpoints:
 – 1st Endpoint: Stroke / Systemic embolism / CV death (& Unknown)
 – 2nd Endpoint: Ischemic Stroke / Systemic embolism (Post 7 days)

• Bayesian Statistical Plan
 – Non-inferiority & Superiority
 – Informative Prior?
 • PROTECT-AF: (None)
 • PREVAIL: Discounted PROTECT-AF

Non-Valvular AF Risk Factors
Randomization (1:2)

Anticoagulation Regimen
• Implant to 6 weeks
 – Warfarin
 – Aspirin
• 6 weeks to 6 months
 – Clopidogrel
 – Aspirin
• After 6 months
 – Aspirin
Warfarin Compliance in Control Groups

<table>
<thead>
<tr>
<th>Study</th>
<th>Warfarin Control Group: Mean TTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTECT AF</td>
<td>70%</td>
</tr>
<tr>
<td>PREVAIL</td>
<td>68%</td>
</tr>
<tr>
<td>RE-LY<sup>1</sup></td>
<td>64%</td>
</tr>
<tr>
<td>ARISTOTLE<sup>2</sup></td>
<td>62%</td>
</tr>
<tr>
<td>ROCKET AF<sup>3</sup></td>
<td>55%</td>
</tr>
<tr>
<td>ENGAGE<sup>4</sup></td>
<td>68%</td>
</tr>
</tbody>
</table>

Overview

• The Watchman Trials
 – Introduction
 – Safety of LAA Closure
 – Efficacy of LAA Closure
 • PROTECT-AF
 • Combined Analysis of All Randomized Data
 – LAA Closure in Contraindicated Patients
• Context
Safety Events Across Trials
PROTECT AF, CAP, PREVAIL & CAP-2

V.Reddy et al, FDA Panel Presentation, October 2014.
Overview

• The Watchman Trials
 – Introduction
 – Safety of LAA Closure
 – Efficacy of LAA Closure
 • PROTECT-AF
 • Combined Analysis of All Randomized Data
 – LAA Closure in Contraindicated Patients

• Context
PROTECT AF
Primary Efficacy Endpoint

HR (95% CI), 0.61 (0.38-0.97)
P = .04

<table>
<thead>
<tr>
<th>No. of patients</th>
<th>Device</th>
<th>Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>463</td>
<td>398</td>
<td>382</td>
</tr>
<tr>
<td>370</td>
<td>360</td>
<td>345</td>
</tr>
<tr>
<td>337</td>
<td>327</td>
<td>317</td>
</tr>
<tr>
<td>285</td>
<td>257</td>
<td>217</td>
</tr>
<tr>
<td>196</td>
<td>141</td>
<td>121</td>
</tr>
</tbody>
</table>

Components of Primary Efficacy Endpoint

<table>
<thead>
<tr>
<th>Event Rate (per 100 pt-yrs)</th>
<th>Rate Ratio (95% CrI)</th>
<th>Posterior Probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Non-inferiority</td>
</tr>
<tr>
<td>WATCHMAN (N=463)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary efficacy</td>
<td>2.3</td>
<td>3.8</td>
</tr>
<tr>
<td>Stroke (all)</td>
<td>1.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Ischemic</td>
<td>1.4</td>
<td>1.1</td>
</tr>
<tr>
<td>Hemorrhagic</td>
<td>0.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Systemic Embolization</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Death (CV & Unexplained)</td>
<td>1.0</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Impact of Strokes
Disabling vs Non-Disabling

<table>
<thead>
<tr>
<th>PROTECT AF</th>
<th>Event Rate (per 100 pt-yrs)</th>
<th>Hazard Ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WATCHMAN N=463</td>
<td>Warfarin N=244</td>
<td></td>
</tr>
<tr>
<td>Stroke (all)</td>
<td>1.5</td>
<td>2.2</td>
<td>0.68 (0.42, 1.37)</td>
</tr>
<tr>
<td>Disabling</td>
<td>0.5</td>
<td>1.2</td>
<td>0.37 (0.15, 1.00)</td>
</tr>
<tr>
<td>Non-disabling</td>
<td>1.0</td>
<td>1.0</td>
<td>1.05 (0.54, 2.80)</td>
</tr>
</tbody>
</table>

- PROTECT AF: 2621 pt-yrs
- Proportional Hazards Model
- Disabling stroke defined as MRS change of 2 or more or death
- Similar results if defined as absolute MRS > 2

Components of Primary Efficacy Endpoint

<table>
<thead>
<tr>
<th>Event Rate (per 100 pt-yrs)</th>
<th>Rate Ratio (95% CrI)</th>
<th>Posterior Probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Non-inferiority</td>
</tr>
<tr>
<td>WATCHMAN (N=463)</td>
<td>Control (N=244)</td>
<td>Non-inferiority</td>
</tr>
<tr>
<td>Primary efficacy</td>
<td>2.3</td>
<td>3.8</td>
</tr>
<tr>
<td>Stroke (all)</td>
<td>1.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Ischemic</td>
<td>1.4</td>
<td>1.1</td>
</tr>
<tr>
<td>Hemorrhagic</td>
<td>0.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Systemic Embolization</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Death (CV & Unexplained)</td>
<td>1.0</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Intention-To-Treat Mortality

B Cardiovascular mortality

C All-cause mortality

All-Cause Mortality

Causes by Treatment Group

<table>
<thead>
<tr>
<th>Cause</th>
<th>Device Group, No. (%)</th>
<th>Warfarin Group, No. (%)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular</td>
<td>17 (3.7)</td>
<td>22 (9.0)</td>
<td><.005</td>
</tr>
<tr>
<td>Heart failure</td>
<td>3 (0.6)</td>
<td>2 (0.8)</td>
<td>>.99</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>2 (0.4)</td>
<td>8 (3.3)</td>
<td><.004</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>1 (0.2)</td>
<td>1 (0.4)</td>
<td>>.99</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>2 (0.4)</td>
<td>2 (0.8)</td>
<td>.61</td>
</tr>
<tr>
<td>Sudden cardiac death</td>
<td>4 (0.9)</td>
<td>4 (1.6)</td>
<td>.46</td>
</tr>
<tr>
<td>Unexplained/other</td>
<td>5 (1.0)</td>
<td>5 (2.0)</td>
<td>.33</td>
</tr>
<tr>
<td>Cancer</td>
<td>10 (2.2)</td>
<td>3 (1.2)</td>
<td>.56</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>9 (1.9)</td>
<td>9 (3.7)</td>
<td>.21</td>
</tr>
<tr>
<td>Neurologic</td>
<td>2 (0.4)</td>
<td>1 (0.4)</td>
<td>>.99</td>
</tr>
<tr>
<td>Multisystem organ failure</td>
<td>6 (1.3)</td>
<td>1 (0.4)</td>
<td>.43</td>
</tr>
<tr>
<td>Other</td>
<td>9 (1.9)</td>
<td>5 (2.0)</td>
<td>>.99</td>
</tr>
<tr>
<td>Renal failure</td>
<td>3 (0.6)</td>
<td>3 (1.2)</td>
<td>.42</td>
</tr>
<tr>
<td>Sepsis</td>
<td>2 (0.4)</td>
<td>1 (0.4)</td>
<td>>.99</td>
</tr>
<tr>
<td>Unexplained/other</td>
<td>4 (0.9)</td>
<td>1 (0.4)</td>
<td>.66</td>
</tr>
</tbody>
</table>
Long-Term PROTECT AF
Differential Attrition

<table>
<thead>
<tr>
<th></th>
<th>Lost to Follow-Up</th>
<th>Other</th>
<th>Withdrawal of Consent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warfarin Group</td>
<td>4.5%</td>
<td>4.1%</td>
<td>18.4%</td>
</tr>
<tr>
<td>Watchman Group</td>
<td>2.8%</td>
<td>2.4%</td>
<td>3.7%</td>
</tr>
</tbody>
</table>

- Long-term follow-up: 2621 pt-yrs
- Possible reasons for withdrawal in control group
 - Perception of little benefit from continued participation
 - Desire for alternate treatment

Updated Vital Status in PROTECT AF
More Strongly Favors Watchman

- Investigators / Centers contacted to obtain vital status
- *Ad Hoc* Vital Status gathered in 40% of withdrawals
 - 24 died (11 in Control & 13 in Watchman)
 - [Rem 1:2 Randomization]

<table>
<thead>
<tr>
<th>PROTECT AF (N=463)</th>
<th>WATCHMAN</th>
<th>Control (N=244)</th>
<th>Hazard Ratio (95% CI)</th>
<th>P-value (Superiority)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaths</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>[2621 pt-year]</td>
<td>57</td>
<td>12</td>
<td>44</td>
<td>18</td>
</tr>
</tbody>
</table>

Based on updated vital status

Is a Mortality Benefit Plausible?

NOACs vs Warfarin

<table>
<thead>
<tr>
<th>Efficacy</th>
<th>Pooled NOAC (events)</th>
<th>Pooled warfarin (events)</th>
<th>RR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischaemic stroke</td>
<td>665/29292</td>
<td>724/29221</td>
<td>0.92 (0.83-1.02)</td>
<td>0.10</td>
</tr>
<tr>
<td>Haemorrhagic stroke</td>
<td>130/29292</td>
<td>263/29221</td>
<td>0.49 (0.38-0.64)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>413/29292</td>
<td>432/29221</td>
<td>0.97 (0.78-1.20)</td>
<td>0.77</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>2022/29292</td>
<td>2245/29221</td>
<td>0.90 (0.85-0.95)</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Safety				
Intracranial haemorrhage	204/29287	425/29211	0.48 (0.39-0.59)	<0.0001
Gastrointestinal bleeding	751/29287	591/29211	1.25 (1.01-1.55)	0.043

Primary Efficacy Endpoint
Relative Risks According to Subgroups

<table>
<thead>
<tr>
<th>Source</th>
<th>Device Group</th>
<th>Warfarin Group</th>
<th>HR (95% CI)</th>
<th>Favors Device</th>
<th>Favors Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Events</td>
<td>No. of Patients</td>
<td>No. of Events</td>
<td>No. of Patients</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>18</td>
<td>137</td>
<td>10</td>
<td>73</td>
<td>1.03 (0.48-2.23)</td>
</tr>
<tr>
<td>Male</td>
<td>21</td>
<td>326</td>
<td>24</td>
<td>171</td>
<td>0.45 (0.25-0.81)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 75 y</td>
<td>22</td>
<td>190</td>
<td>22</td>
<td>115</td>
<td>0.63 (0.35-1.14)</td>
</tr>
<tr>
<td>< 75 y</td>
<td>17</td>
<td>273</td>
<td>12</td>
<td>129</td>
<td>0.67 (0.32-1.41)</td>
</tr>
<tr>
<td>CHADS² score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.29 (0.08-1.03)</td>
</tr>
<tr>
<td>> 1</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.73 (0.44-1.20)</td>
</tr>
<tr>
<td>AF pattern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paroxysmal</td>
<td>18</td>
<td>200</td>
<td>14</td>
<td>99</td>
<td>0.62 (0.31-1.24)</td>
</tr>
<tr>
<td>Persistent</td>
<td>5</td>
<td>97</td>
<td>8</td>
<td>50</td>
<td>0.31 (0.10-0.95)</td>
</tr>
<tr>
<td>Permanent</td>
<td>16</td>
<td>160</td>
<td>12</td>
<td>93</td>
<td>0.84 (0.40-1.78)</td>
</tr>
<tr>
<td>History of TIA or stroke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>13</td>
<td>82</td>
<td>12</td>
<td>49</td>
<td>0.66 (0.30-1.45)</td>
</tr>
<tr>
<td>No</td>
<td>26</td>
<td>381</td>
<td>22</td>
<td>195</td>
<td>0.61 (0.35-1.08)</td>
</tr>
<tr>
<td>Prior years taking warfarin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1</td>
<td>25</td>
<td>226</td>
<td>19</td>
<td>125</td>
<td>0.72 (0.40-1.31)</td>
</tr>
<tr>
<td>≥1</td>
<td>14</td>
<td>230</td>
<td>14</td>
<td>116</td>
<td>0.52 (0.25-1.10)</td>
</tr>
<tr>
<td>LAA ostium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ Median (21 mm)</td>
<td>18</td>
<td>249</td>
<td>18</td>
<td>128</td>
<td>0.52 (0.27-0.99)</td>
</tr>
<tr>
<td>< Median</td>
<td>20</td>
<td>208</td>
<td>16</td>
<td>111</td>
<td>0.67 (0.35-1.29)</td>
</tr>
<tr>
<td>LAA length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ Median (30 mm)</td>
<td>16</td>
<td>235</td>
<td>16</td>
<td>124</td>
<td>0.49 (0.25-0.99)</td>
</tr>
<tr>
<td>< Median</td>
<td>22</td>
<td>222</td>
<td>18</td>
<td>115</td>
<td>0.68 (0.36-1.27)</td>
</tr>
<tr>
<td>LV ejection fraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ Median (60%)</td>
<td>19</td>
<td>236</td>
<td>14</td>
<td>123</td>
<td>0.70 (0.35-1.41)</td>
</tr>
<tr>
<td>< Median</td>
<td>20</td>
<td>224</td>
<td>19</td>
<td>116</td>
<td>0.56 (0.30-1.05)</td>
</tr>
<tr>
<td>All patients</td>
<td>0.61 (0.38-0.97)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Secondary Efficacy Endpoints

Impact of Concomitant Medications

<table>
<thead>
<tr>
<th>Primary Efficacy Outcomes (2621 pt-yr)</th>
<th>WATCHMAN (N=463)</th>
<th>Control (N=244)</th>
<th>Rate Ratio (95% CrI)</th>
<th>Posterior Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per-Protocol</td>
<td>1.8</td>
<td>3.7</td>
<td>0.50</td>
<td>>0.999</td>
</tr>
<tr>
<td>Late Therapy</td>
<td>1.8</td>
<td>3.7</td>
<td>0.50</td>
<td>>0.999</td>
</tr>
</tbody>
</table>

(Whole Study: 2621 pt-yrs)

- **Per-protocol Analysis (pre-specified):**
 - Includes Device patients who stopped **warfarin**

- **Late Therapy (post-hoc):**
 - Includes Device patients following discontinuation of **clopidogrel**
Overview

• The Watchman Trials
 – Introduction
 – Safety of LAA Closure
 – Efficacy of LAA Closure
 • PROTECT-AF
 • Combined Analysis of All Randomized Data
 – LAA Closure in Contraindicated Patients

• Context
PROTECT-AF & PREVAIL
Combined Analysis

<table>
<thead>
<tr>
<th>Outcome</th>
<th>HR</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All stroke or SE</td>
<td>1.02</td>
<td>0.94</td>
</tr>
<tr>
<td>Ischemic stroke or SE</td>
<td>1.95</td>
<td>0.05</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>0.22</td>
<td>0.004</td>
</tr>
<tr>
<td>CV/unexplained death</td>
<td>0.48</td>
<td>0.006</td>
</tr>
<tr>
<td>All-cause death</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major bleed, all</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>Major bleeding, non procedure-related</td>
<td>0.51</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Hazard Ratio (95% CI)

PROTECT-AF & PREVAIL

Combined Analysis

<table>
<thead>
<tr>
<th>Event</th>
<th>Hazard Ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All stroke or SE</td>
<td>1.02</td>
<td>0.94</td>
</tr>
<tr>
<td>Ischemic stroke or SE</td>
<td>1.95</td>
<td>0.05</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>0.22</td>
<td>0.004</td>
</tr>
<tr>
<td>CV/unexplained death</td>
<td>0.48</td>
<td>0.006</td>
</tr>
<tr>
<td>All-cause death</td>
<td>0.73</td>
<td>0.07</td>
</tr>
<tr>
<td>Major bleed, all</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>Major bleeding, non procedure-related</td>
<td>0.51</td>
<td>0.002</td>
</tr>
</tbody>
</table>

D.Holmes et al, TCT Presentation, September 2014.
PROTECT-AF & PREVAIL Combined Analysis

<table>
<thead>
<tr>
<th>Category</th>
<th>Hazard Ratio (95% CI)</th>
<th>HR</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All stroke or SE</td>
<td></td>
<td>1.02</td>
<td>0.94</td>
</tr>
<tr>
<td>Ischemic stroke or SE</td>
<td></td>
<td>1.95</td>
<td>0.05</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td></td>
<td>0.22</td>
<td>0.004</td>
</tr>
<tr>
<td>CV/unexplained death</td>
<td></td>
<td>0.48</td>
<td>0.006</td>
</tr>
<tr>
<td>All-cause death</td>
<td></td>
<td>0.73</td>
<td>0.07</td>
</tr>
<tr>
<td>Major bleed, all</td>
<td></td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>Major bleeding, non procedure-related</td>
<td></td>
<td>0.51</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Favors WATCHMAN ← 1 → Favors warfarin

The Big Picture
How Does Watchman Compare to Warfarin?

- Cardiovascular / Unexplained Death (includes CV deaths preceded by stroke)
- Non-fatal Ischemic Stroke / Systemic Embolism
- Non-fatal Hemorrhagic Stroke
- Event-free

N=1000; Each circle represents a single patient (N=1) with WATCHMAN or warfarin followed through five years

K.Huber et al, FDA Panel Presentation, October 2014.
The Big Picture
Cardiovascular Death Lower with Watchman

- **Cardiovascular / Unexplained Death** (includes CV deaths preceded by stroke)
- **Non-fatal Hemorrhagic Stroke**
- **Non-fatal Ischemic Stroke / Systemic Embolism**
- **Event-free**

Zoomed in to show N=500 of 1000 patients per arm. Each circle represents a single patient (N=1) with Watchman or warfarin followed through 5 years.

K.Huber et al, FDA Panel Presentation, October 2014.
The Big Picture

Hemorrhagic Stroke Lower with Watchman

Zoomed in to show N=500 of 1000 patients per arm. Each circle represents a single patient (N=1) with Watchman or warfarin followed through 5 years.

K.Huber et al, FDA Panel Presentation, October 2014.
The Big Picture

Add Ischemic Stroke/SE ➔ Watchman is an Alternative

- **Cardiovascular / Unexplained Death** (includes CV deaths preceded by stroke)
- **Non-fatal Hemorrhagic Stroke**
- **Non-fatal Ischemic Stroke / Systemic Embolism**
- **Event-free**

Zoomed in to show N=500 of 1000 patients per arm. Each circle represents a single patient (N=1) with Watchman or warfarin followed through 5 years.

Overview

• The Watchman Trials
 – Introduction
 – Safety of LAA Closure
 – Efficacy of LAA Closure
 • PROTECT-AF
 • Combined Analysis of All Randomized Data
 – LAA Closure in Contraindicated Patients
• Context
ASAP Registry

Contraindicated Pts (n=150): Watchman → ASA/Clop x 6 mo

➢ CHADS\textsubscript{2} = 2.8 ± 1.2
➢ Prior CVA/TIA in 41%
➢ Follow-up: 16.5 months

ASAP Registry

Contraindicated Pts (n=150): Watchman → ASA/Clop x 6 mo

Overview

• The Watchman Trials
 – Introduction
 – Safety of LAA Closure
 – Efficacy of LAA Closure
 • PROTECT-AF
 • Combined Analysis of All Randomized Data
 – LAA Closure in Contraindicated Patients

• Context
NOACs are Excellent Medications
But Not for Everyone…

FDA Slide Deck. Dabigatran FDA Review from Panel Meeting 2010
NOACs: Bleeding in the “Real World”

- Retrospective Cohort Study
- Pharmacy/Medical Claims (2010-2011) from a 5% random sample of Medicare beneficiaries
- Patients with newly-diagnosed AF who initiated Warfarin or Dabigatran

<table>
<thead>
<tr>
<th></th>
<th>Warfarin n=8102</th>
<th>Dabigatran n=1302</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>By Severity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td>26.5%</td>
<td>32.7%</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Major</td>
<td>5.9%</td>
<td>9.0%</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Minor</td>
<td>23.6%</td>
<td>28.6%</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Preventing Stroke in Non-Valvular AF
Effectiveness of Different Strategies

* Reached statistical superiority relative to warfarin.
Economic Analysis

Watchman vs Dabigatran vs Warfarin

- **Assess:** Cost-effectiveness of LAAC & NOAC to warfarin
- **Methods:**
 - Patient level Markov micro-simulation decision analytic model
 - Lifetime horizon
 - From perspective of the Ontario Ministry of Health & Long Term Care

<table>
<thead>
<tr>
<th>Discounted</th>
<th>Cost (CAD 2012)</th>
<th>Incremental Cost (CAD 2012)</th>
<th>QALY$</th>
<th>Incremental QALY</th>
<th>ICER ($/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warfarin</td>
<td>$21,429</td>
<td>0</td>
<td>4.55</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Dabigatran</td>
<td>$25,760</td>
<td>$4,331</td>
<td>4.64</td>
<td>0.09</td>
<td>$46,560*</td>
</tr>
<tr>
<td>LAA occlusion</td>
<td>$27,003</td>
<td>$1,243</td>
<td>4.68</td>
<td>0.04</td>
<td>$30,256*</td>
</tr>
<tr>
<td>Warfarin</td>
<td>$21,429</td>
<td>0</td>
<td>4.55</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>LAA occlusion</td>
<td>$27,003</td>
<td>$5,574</td>
<td>4.68</td>
<td>0.13</td>
<td>$41,565**</td>
</tr>
</tbody>
</table>

QALY = quality-adjusted life-years; ICER = incremental cost effectiveness ratio. *ICERs for Dabigatran and LAA occlusion are calculated compared to the next less inexpensive strategy. **ICER for LAA occlusion is calculated compared to warfarin.

Final Thoughts

• The LAA is critical to the pathogenesis of stroke

• “Local” therapy with LAA closure is comparable to Warfarin
 – Primary endpoint: stroke / systemic embolism / CV death
 – Increase in Ischemic Stroke balanced by a decrease in Hemorrhagic Stroke
 – Over 50% reduction in Disabling Strokes
 – Over 50% reduction in Cardiovascular Mortality

• Overall safety event rate similar, but up-front risk
 – Cardiac Tamponade Rate (Decreases with operator experience):
 ➢ ~5% (PROTECT AF) / 1-2% (CAP/PREVAIL/CAP-2) / 0% (Mount Sinai)

• Role of LAA Closure in setting of Novel OACs??
 – NOACs not tolerated in All / Double-Triple Tx increase bleeding (Elderly!)
 – LAA Closure is an option for pts who don’t tolerate OAC therapy