Severe Left Ventricular Dysfunction: Evolving Revascularization Strategies

Robert O. Bonow, MD, MS, MACC
Northwestern University Feinberg School of Medicine
Bluhm Cardiovascular Institute
Northwestern Memorial Hospital

No Relationships to Disclose
Prognosis in Chronic CAD

Influence of LV Ejection Fraction

Prognosis in Ischemic LV Dysfunction

Increase in Survival by Revascularization

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Increase in Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vliestra</td>
<td>1977</td>
<td>10%</td>
</tr>
<tr>
<td>Alderman</td>
<td>1983</td>
<td>30%</td>
</tr>
<tr>
<td>Manley</td>
<td>1976</td>
<td>37%</td>
</tr>
<tr>
<td>Muhlbaier</td>
<td>1992</td>
<td>41%</td>
</tr>
<tr>
<td>Pigott</td>
<td>1985</td>
<td>44%</td>
</tr>
<tr>
<td>Bounous</td>
<td>1988</td>
<td>55%</td>
</tr>
<tr>
<td>Faulkner</td>
<td>1977</td>
<td>57%</td>
</tr>
</tbody>
</table>
Prognosis in Ischemic LV Dysfunction

Increase in Survival by Medical Therapy

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Increase in Survival (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEi / ARB</td>
<td>38%</td>
<td>[20, 68]</td>
</tr>
<tr>
<td>ACEi / ARB + β blocker</td>
<td>77% (43, 91)</td>
<td></td>
</tr>
<tr>
<td>ACEi / ARB + β blocker + ICD / CRT</td>
<td>90% (70, 96)</td>
<td>from Yancy CW, J Am Heart Assoc 2012;1:16-26</td>
</tr>
</tbody>
</table>
Surgical Treatment for Ischemic Heart Failure
STICH Trial

- 1212 patients with EF <35%
- 99 sites in 22 countries
- Primary Endpoint: All-cause mortality
- Secondary Endpoints:
 - CV mortality
 - Death + CV hospitalization
 - Death + HF hospitalization
STICH Primary Outcome
All-Cause Mortality

Medical therapy
CABG

1212 patients
EF <35%

HR 95% CI
0.86 0.72.1.04

P = 0.123

STICH Secondary Outcome
Cardiovascular Mortality

![Graph showing the comparison of cardiovascular mortality rates between medical therapy and CABG over 6 years after randomization. The graph includes a Kaplan-Meier survival curve with two lines: one for medical therapy and one for CABG. The HR and 95% CI for medical therapy are provided: HR = 0.81, 95% CI = 0.66 to 1.00. The P-value is 0.050.]

STICH Secondary Outcome
Death + CV Hospitalization

STICH Secondary Outcome
All-Cause Mortality – Treatment Received

Medical therapy vs. CABG over 6 years.

Doenst et al. *Circ Heart Fail* 2013;6:443-450
STICH Secondary Outcome
All-Cause Mortality – Per Protocol

![Graph showing mortality rates over years after randomization]

- Medical therapy
- CABG

<table>
<thead>
<tr>
<th>HR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.76</td>
<td>0.62, 0.92</td>
</tr>
</tbody>
</table>

\[P = 0.005\]

Doenst et al. *Circ Heart Fail* 2013;6:443-450
Is STICH a negative trial or a positive trial?

Myocardial Revascularization in Patients with LV Dysfunction

The STICH Trial:
Are there subsets who benefit from CABG?

Myocardial viability
Myocardial Revascularization in Patients with LV Dysfunction

The STICH Trial:
Are there subsets who benefit from CABG?

Myocardial viability

The STICH Trial:
Are there subsets who benefit from CABG?

Myocardial viability

The Heart Trial
With Viability

Medical therapy (n=69)
Revascularization (n=69)

n=138
p=NS

from Cleland et al, Eur J Heart Fail 2011;13:227-233

Patients with ESVI ≤84 ml/m²

5-Year Mortality Rate (%)

Extent of Baseline Viability (percent)
Patients with ESVI ≤84 ml/m²

Patients with ESVI >84 ml/m²
Heart Failure

Myocardial Viability Testing and the Effect of Early Intervention in Patients With Advanced Left Ventricular Systolic Dysfunction

Khalfoun G. Tarakji, M. Obadah Al-Chekak, Eugene

Revascularization vs Medical Therapy in Patients with Left Ventricular Dysfunction

n=306

3-Year Mortality (%) vs Amount of Compromised Viable Myocardium (%)

from Tarakji et al, Circulation 2006;113:230-237
Myocardial Revascularization in Patients with LV Dysfunction

The STICH Trial:
Are there subsets who benefit from CABG?

Myocardial ischemia
Myocardial Revascularization in Patients with LV Dysfunction

The STICH Trial:
Are there subsets who benefit from CABG?

Myocardial ischemia

Impact of Ischemia and Scar on Therapeutic Benefit of Coronary Revascularization

- Magnitude of ischemic myocardium associated with survival benefit with revascularization in patients *without* prior MI
- No such benefit in patients *with* prior MI
- Role of ischemia not significant in patients with >10% myocardial scar

Hachamovich et al, *Eur Heart J* 2011;32:1012-1024
Myocardial Revascularization in Patients with LV Dysfunction

The STICH Trial:
Are there subsets who benefit from CABG?

Biomarkers

Feldman et al. *Circ Heart Fail* 2013;6:461-472
Myocardial Revascularization in Patients with LV Dysfunction

The STICH Trial:
Are there subsets who benefit from CABG?

Functional capacity

Stewart et al. *JACC Heart Fail* 2014;2:335-343
Myocardial Revascularization in Patients with LV Dysfunction

The STICH Trial:
Are there subsets who benefit from CABG?
CAD severity, EF, ESV

Panza et al. J Am Coll Cardiol 2014;64:553-561
Myocardial Revascularization in Patients with LV Dysfunction

Factors to consider:

More important:
- Severity of LV dysfunction
- Severity of LV remodeling
- Angiographic severity of CAD
- Functional capacity

Less important:
- Extent of myocardial viability
- Severity of myocardial ischemia
- Biomarkers

Velazquez and Bonow. J Am Coll Cardiol 2015;65:615-624