Device Interrogation-Pacemakers, ICD and Loop Recorders

Dulce Obias-Manno, RN, MHSA, CCDS,CEPS, FHRS Device Clinic Coordinator, MHVI Wash DC

Disclosures

Consultant: Medtronic, St. Jude Medical

Do all Cardiac Implantable Electronic Devices deliver therapy?

A. Yes

B. No

B. No

Only Pacemakers, ICDs and CRTs provide device based therapies. Implantable Loop Recorders (ILR) are purely diagnostic devices.

2008 ACC/AHA/HRS Guidelines for Device-Based Therapy. Circulation. 2008;117:2820-2840

Pacemaker

Battery	
Capacitor	
🔽 Low Voltage	
🔲 High Voltage	
🛛 Asystole	
🔽 Heart Failure	

Brady Detections
 Brady Therapies
 AT/AF Detections
 AT/AF Therapies
 VT/VF Detections
 VT/VF Therapies

ICD

Battery
Capacitor
🛛 Low Voltage
🛿 High Voltage
🛛 Asystole
🖉 Heart Failure

Brady Detections

- 🛿 Brady Therapies
- AT/AF Detections
- AT/AF Therapies
- VT/VF Detections
- VT/VF Therapies

ILR

Trends

ICDs: Expanding Indications for implantation

2006 ACC/AHA/ESC Guidelines for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. Circulation. 2006;**114**:1088-1132

2008 ACC/AHA/HRS Guidelines for Device-Based Therapy. Circulation. 2008;117:2820-2840

2013 ACC/AHA Guideline for the Management of Heart Failure. Circulation. 2013;**128**:e240-e327

2013 ACC/AHA Guideline for the Management of ST-Elevation Myocardial Infarction. Circulation. 2013;**127**:e362-e425

2014 HRS/ACC/AHA Expert Consensus Statement on the Use of Implantable Cardioverter-Defibrillator Therapy in Patients Who Are Not Included or Not Well Represented in Clinical Trials Circulation. 2014;130:94-125

Increasing co- morbid conditions			
Charleston Co morbidity Index			
	1993	2009	
CCI >2			
VVI	14.1%		
DDD	13.5%	42.4%	

Greenspon A JACC Vol. 60, No. 16, 2012

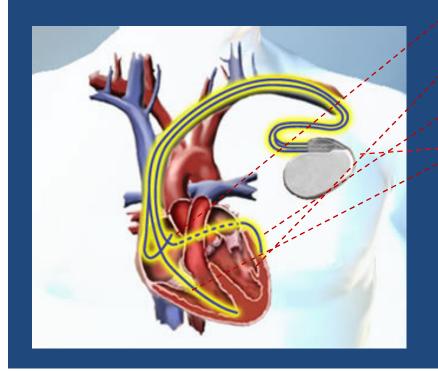
Is it necessary to interrogate every CIED you encounter?

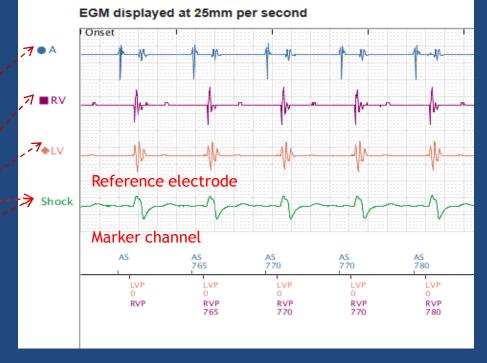
A) YesB) No

Device Interrogation Determine clinical effectiveness

Confirm appropriate function

Evaluate impact on co-morbid conditions


Determine Clinical Effectiveness


Presenting rhythm

Settings (parameters)

Presenting Rhythm

Settings (ICD)

Parameter Summary			
Mode	VVI	Lower Rate	60 bpm
Detection		Rates	Therapies
VF	On	>200 bpm	ATP During Charging, 35J x 6
FVT	OFF		All Rx Off
VT	On	167-200 bpm	Burst(3), 20J, 35J x 4
Enhancements On: VT Monitor, Wavelet, TWave, Noise			

Settings (PM)

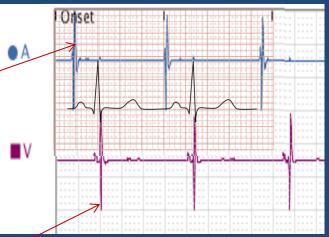
Mode	AAI<=>DDD	Lower Rate	60 bpm	Paced AV	180 ms
Mode Switch	171 bpm	Upper Track	130 bpm	Sensed AV	150 ms
		Upper Sensor	130 bpm		
Detection		Rates	Therapies		
AT/AF	Monitor	>171 bpm	All Rx Off		
VT	Monitor	>150 bpm			

Settings (ILR)

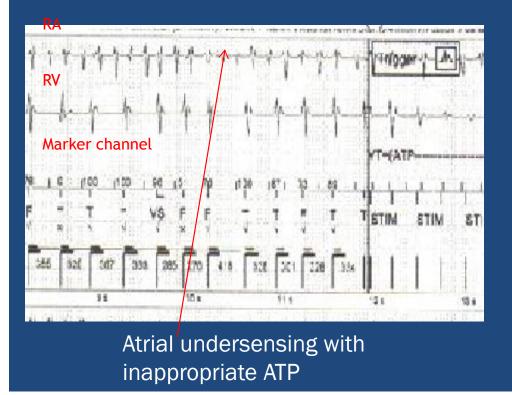
Parameter Summary: 02-Sep-2015 11:13			
	Detection	Rate	Duration
Symptom	On		Four 7.5 min Episodes
Tachy	On	150 bpm	16 beats
Brady	On	30 bpm	4 beats
Pause	On		3 seconds
AT/AF	AF Only		All Episodes

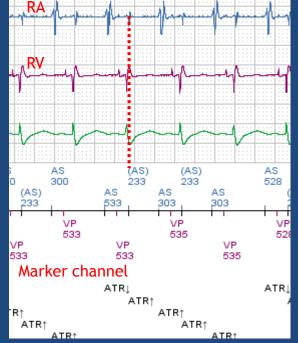
Confirm Appropriate Function Intrinsic Rhythm

Lead integrity

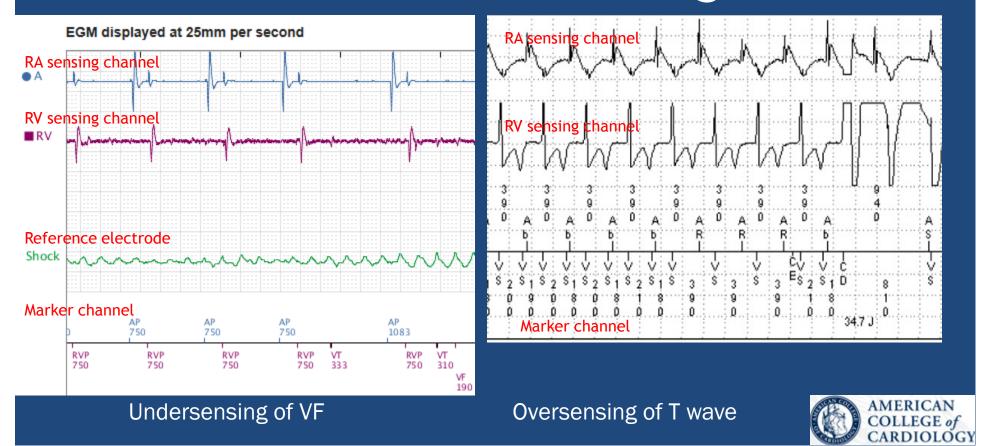

Battery Status

Intrinsic amplitude (mV)

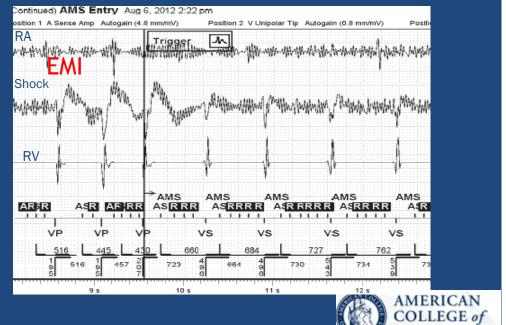

A- EGM: measurement of intrinsic atrial signal


V-EGM: measurement of intrinsic ventricular signal

Atrial sensing



Atrial oversensing with inappropriate mode switch


Ventricular sensing

Lead assessment

Causes of lead noise:

CARDIOLOGY

Voltage: battery status

Battery Longevity: 5.3-8.7 yrs	Implant Date:	May 12, 2016
~ERI ^{> 5 yrs}	Voltage Magnet Rate Battery Current Remaining Capacity to ERI	3.01 V 100.0 ppm 12 uA >95%

Impact on co-morbid conditions

Observations: Arrhythmia burden Percent paced HF Metrics

Observations:

Arrhythmia burden: Atrial fibrillation

Duration

• Average ventricular response

Paulus Kirchhof et al. Europace 2016; europace.euw 295

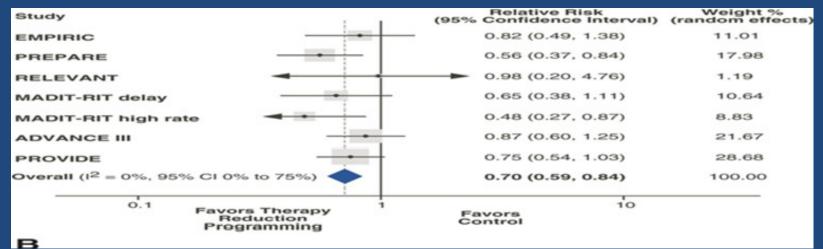
Observations:

Arrhythmia burden: ICD shocks

Discrimination

• Appropriate intervention

Minimizing ICD Shocks


<u>Conventional programming</u> VF detection (200 bpm): 1 sec VT detection (180 bpm): 2.5 secs ATP therapy: 188-200 bpm SVT discrimination: 188-200 Therapy reduction programming*
VF detection (230 bpm): 60 sec
VT detection (200 bpm): 6-12
secs
ATP therapy 188-230 bpm
SVT discrimination: 188-230

*in primary prevention

2015 HRS/EHRA/APHRS/SOLAECE expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing

Meta analysis on mortality risk, therapy reduction vs conventional programming

Therapy reduction programming was associated with 30% reduction on all cause mortality P = < 0.001

Vern Hsen Tan et al. Circ Arrhythmia Electrophysiol. 2014;7:164-170

INCIDENCE Appropriate and Inappropriate Shocks

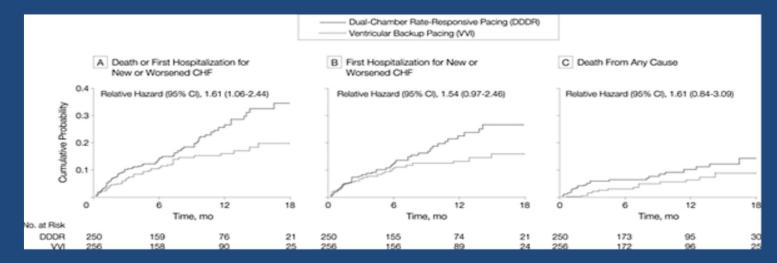
Appropriate Shock Inappropriate Shock 30% 25% 20% 15% 10% 5% 0% MADIT IL SCO. HEFT MANION ATTIUDE. ... HUDE ICO PREPARE NANCE I MADIT. RIT. ... 1997-2008: Physician discretion or 1 zone 2008-2013: Shock reduction strategies: extended shock only delay, high rate, discriminators, ATP Daubert JP. et al. JACC 2008: 51:1357-1365.

Daubert JP, et al. *JACC* 2008; 51:1357-1365. Bardy GH,et al. SCD-HeFT. *NEJM* 2005; 352;3:225-237. Saxon, LA et al. *Circulation* 2006; 114; 2766-2772. Saxon LA et al. *Circulation* 2010; 122:2359-2367. Wilkoff B, et al. *JACC* 2008; 52:541-550 Gasparini,M, et al. *JAMA* 2013; 309: 1903-1911. Moss, A, et al. *NEJM* 2012; 367:2275-2283

What is the most compelling
reason to minimize ICD shocks?
A. To prolong battery life
B. To minimize pain
C. To improve quality of life
D. To improve survival

Answer

A. To prolong battery lifeB. To minimize painC. To improve quality of lifeD. To improve survival

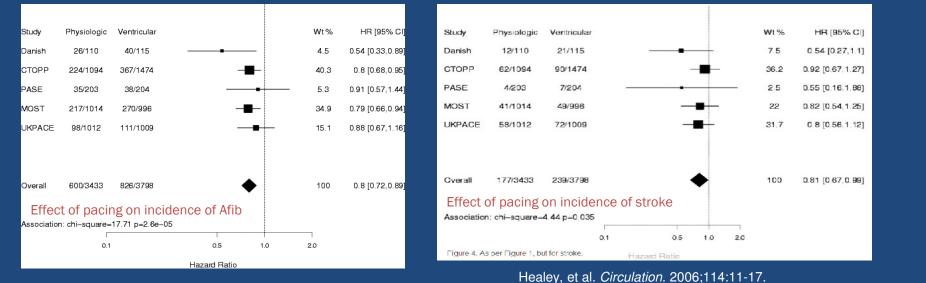

Therapy reduction programming was associated with 30% reduction on all cause mortality P= <0.001 Vern Hsen Tan et al. Circ Arrhythmia Electrophysiol. 2014;7:164-170

Impact on co-morbid conditions Observations: Arrhythmia burden Percent paced : Minimizing Unnecessary RV Pacing HF Metrics

JN) The JAMA Network

From: Dual-Chamber Pacing or Ventricular Backup Pacing in Patients With an Implantable Defibrillator: The Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial JAMA. 2002;288(24):3115-3123. doi:10.1001/jama.288.24.3115

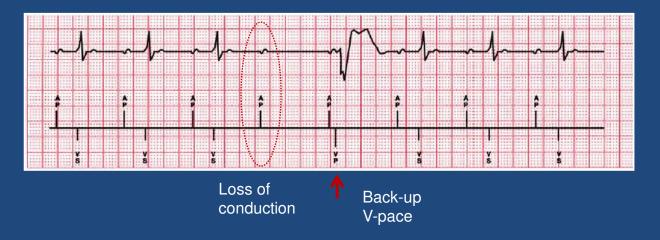
Figure Legend:


For all plots, time zero is the day of randomization. CI indicates confidence interval. A, Survival to death or first hospitalization for congestive heart failure (CHF). Unadjusted P = .02; adjusted for sequential monitoring, P = .03. B, Survival to first hospitalization for CHF. Patients are censored at death. Log-rank P = .07. C, Survival to death from any cause. Log-rank P = .15

Date of download: 9/3/2016

Copyright © 2016 American Medical Association. All rights reserved.

Observations: Percent paced Meta analysis of atrial based vs ventricular based pacing


Physiologic (atrial based) pacing showed a significant reduction on Afib incidence and a moderate reduction on stroke risk

Observations:

Percent paced

• Minimizing RV pacing

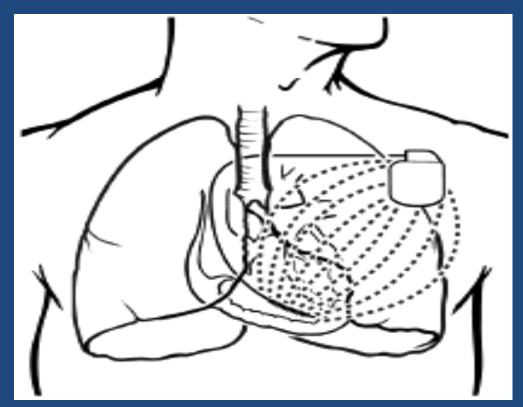
Courtesy of Medtronic Inc

What negative outcomes can result from unnecessary RV pacing ?

- A. May worsen heart failure in LV systolic dysfunction
- B. Increases incidence of Afib
- C. Shortens patient survival by 10 years
- D. Both A and B
- E. Both A and C

Answer

- A. May worsen heart failure in LV systolic dysfunction
- B. Increases incidence of Afib
- C. Shortens patient survival by 10 years
- D. Both A and B
- E. Both A and C

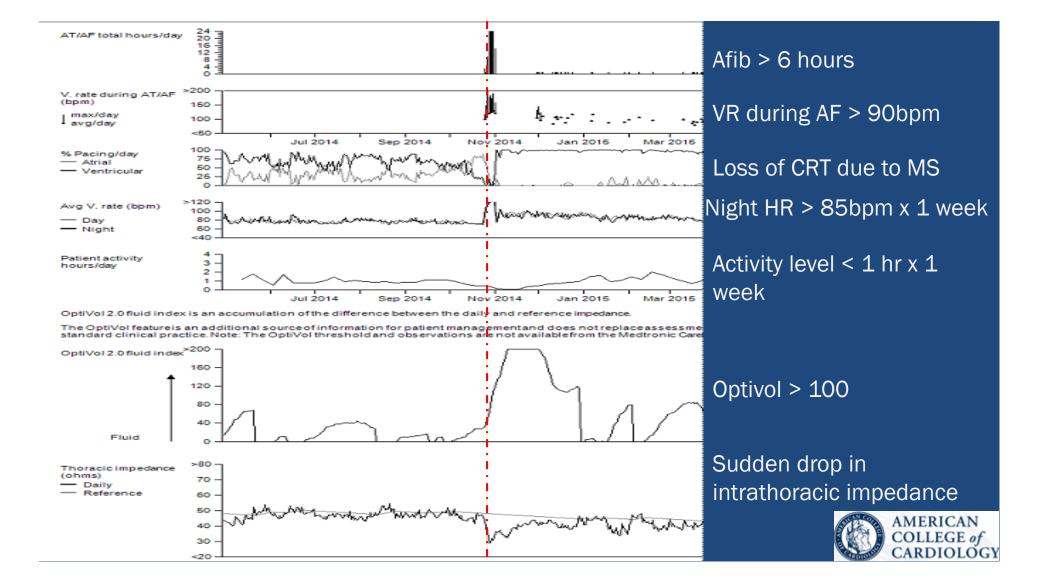

Unnecessary RV pacing is associated with higher incidence of Afib and ventricular dyssynchrony.

HEART FAILURE METRICS

Intrathoracic impedance measurement by implantable system

Cheuk-Man Yu et al. Circulation. 2005;112:841-848

sociation. Copyright © American Heart Association, Inc. All rights reserved.


Combined Diagnostic Criteria

HF Device Diagnostic Parameter	Algorithm	
AF duration	AF ≥6 h on at least 1 day in patients without persistent AF (7 consecutive days with ≥23 h AF)	
Ventricular rate during AF	AF = 24 h and the average ventricular rate during AF ≥90 beats/min on at least 1 day	
Fluid index (OptiVol)	High fluid index on at least 1 day; thresholds included ≥60, ≥80, and ≥100	High risk of HF hospitalization: Optivol > 100
Patient activity	Average patient activity <1 h over 1 week (nonoverlapping weekly windows)	Criteria ≥ 2
Night heart rate	Average night heart rate >85 beats/min for 7 consecutive days (nonoverlapping weekly windows)	PARTNERS-HF trial: data from 694 CRT-D pts followed for
HRV	HRV <60 ms everyday for 1 week (minimum 5 measured days) (nonoverlapping weekly windows)	11.7 2 months
% of pacing CRT	Ventricular pacing <90% for 5 of 7 days (nonoverlapping weekly windows)	
ICD shock for potentially lethal VT/VF	≥1 shocks during the evaluation period	

Chart adapted from

Whellan DJ et al PARTNERS HF Trial JACC Volume 55, Issue 17, April 2010

Evaluation (final):

Appropriate?

Normal function?

And let's not forget the patient

Pocket appearance

Good

Bad

Ugly

MNEMONIC P.S. I LOVE the patient

Presenting rhythm Settings Intrinsic amplitude Lead measurements Observations Voltage (battery function) Evaluation

the patient

Take away points Device interrogation provides a myriad of data

A clinician's focus clinical effectiveness appropriate function Impact on co-morbid conditions

AMERICAN COLLEGE of CARDIOLOGY