

ACC Middle East Conference 2016

Quantifying Valvular Regurgitation

William A. Zoghbi MD, MACC

Elkins Family Distinguished Chair in Cardiac Health Professor and Chairmen, Department of Cardiology Houston Methodist DeBakey Heart & Vascular Center Houston, Texas

Valvular Regurgitation General Considerations

Importance of:

- Valvular structure/Mechanism
- Cardiac adaptation to the volume overload
- Hemodynamics: affect severity & regurgitation parameters—irrespective of the modality
- Acute vs. chronic regurgitation

Mitral Regurgitation

Mitral Regurgitation Indicators of Severity

Anatomy

Color Flow

Pulsed Doppler

Doppler

- Mitral valve pathology
- LV/ LA size
- Color Doppler: Vena contracta Jet Area, Flow convergence
- Mitral E; Pulmonary vein pattern
- Regurgitant flow/fraction
- CW density and contour

Evaluating MR Severity An Integrative Approach

	Mild	Moderate	Severe	
Structural parameters				
LA SIZE	Normal*	Normal or dilated	Usually dilated**	
LV size	Normal*	Normal or dilated	Usually dilated**	
Mitral leaflets or	Normal or abnormal	Normal or abnormal	Abnormal/	
support apparatus			Flail leaflet/	
			Ruptured papillary muscle	
Doppler parameters				
Color flow jet area ⁸	Small, central jet	Variable	Large central jet (usually	
	(usually $< 4 \text{ cm}^2 \text{ or}$		$> 10 \text{ cm}^2 \text{ or} > 40\% \text{ of LA}$	
	< 20% of LA area)		area) or variable size wall-	
			impinging jet swirling in LA	
Mitral inflow –PW	A wave dominant ^{ϕ}	Variable	E wave dominant ⁶	
			(E usually 1.2 m/s)	
Jet density –CW	Incomplete or faint	Dense	Dense	
Jet contour –CW	Parabolic	Usually parabolic	Early peaking–triangular	
Pulmonary vein flow	Systolic dominance [§]	Systolic blunting [§]	Systolic flow reversal [†]	
Quantitative parameters [®]				
VC width (cm)	< 0.3	0.3-0.69	≥ 0.7	
R Vol (ml/beat)	< 30	30-44 45-59	≥ 60	
RF (%)	< 30	30-39 40-49	≥ 50	
$EROA(cm^2)$	< 0.20	0.20-0.29 0.30-0.39	≥ 0.40	

Zoghbi et al. J Am Soc Echocardiogr 2003;16:777-802

Mitral Regurgitation *Color Flow Doppler Evaluation*

Vena Contracta Proximal Jet Width

VC	width (cm)
Mild	< 0.3
Moderate	0.3-0.7

Severe > 0.7

Flow Convergence Method Proximal Isovelocity Surface Area (PISA)

Reg Flow = $2\pi r^2 x Va$ EORA = Reg Flow / Vel_{MR}

Effective Orifice Regurgitant Area & Regurgitant Volume

	Mild	Moderate		Severe
EROA (cm ²)	< 0.2	0.20-0.29	0.30-0.39	≥ 0.4
RVo1 (mL/beat)	< 30	30-44	45-59	≥ 60

Flow Convergence

Can be used semiquantitatively
Variability during the cardiac cycle
Less accurate in eccentric jets
Assumptions of hemispheric geometry, less accurate in functional MR Mitral Regurgitation Indicators of Severity

- Mitral valve pathology
- LV/ LA size
- Color Doppler: PISA-EROA, Vena Contracta, Jet Area...Beware of eccentric jets!
- Regurgitant flow/fraction (Pulsed Doppler)
- CW density and contour
- Mitral E; Pulmonary vein flow pattern

Regurgitant Fraction/Flow Pulsed Doppler

RF =Regurgitant Volumetotal LV stroke volume

RF = <u>Mitral SV - Systemic SV</u> Mitral SV

In MR, Systemic SV = aortic SV or pulmonic SV

LV Outflow

Mitral Annulus

Annular Diameter

Velocity- PW

Assessment of MR Severity Regurgitant Volume & Fraction

	Mild	Moderate		Severe
Reg Vo1ume	< 30 ml	30-44 ml	45-59 ml	≥ 60 ml
Reg Fraction	< 30%	30- 49%	45-59	≥ 50%

In low flow Functional, more emphasis on Reg Fraction

Regurgitant Volume & Fraction

Advantages

- Quantitative, valid in multiple jets and eccentric jets
- Provides both lesion severity and volume overload

Limitations

- Needs training; Cumbersome; wide (20%) confidence limits

- Measurement of flow at MV annulus is less reliable in calcific MV and/or annulus

Mitral Regurgitation Indicators of Severity

- Mitral valve pathology
- LV/ LA size
- Color Doppler: PISA-EROA, Vena Contracta, Jet Area...Beware of eccentric jets!
- Regurgitant flow/fraction (Pulsed Doppler)
- CW density and contour
- Pulmonary vein flow pattern

Assessment of MR Severity

Density & Contour of MR jet by CW

Pulmonary Vein Flow in Severe MR

Evaluating MR Severity An Integrative Approach

	Mild	Moderate	Severe	
Structural parameters				
LA SIZE	Normal*	Normal or dilated	Usually dilated**	
LV size	Normal*	Normal or dilated	Usually dilated**	
Mitral leaflets or	Normal or abnormal	Normal or abnormal	Abnormal/	
support apparatus			Flail leaflet/	
			Ruptured papillary muscle	
Doppler parameters				
Color flow jet area ⁸	Small, central jet	Variable	Large central jet (usually	
	(usually $< 4 \text{ cm}^2 \text{ or}$		$> 10 \text{ cm}^2 \text{ or} > 40\% \text{ of LA}$	
	< 20% of LA area)		area) or variable size wall-	
			impinging jet swirling in LA	
Mitral inflow –PW	A wave dominant ^{ϕ}	Variable	E wave dominant ⁶	
			(E usually 1.2 m/s)	
Jet density –CW	Incomplete or faint	Dense	Dense	
Jet contour –CW	Parabolic	Usually parabolic	Early peaking–triangular	
Pulmonary vein flow	Systolic dominance [§]	Systolic blunting [§]	Systolic flow reversal [†]	
Quantitative parameters [®]				
VC width (cm)	< 0.3	0.3-0.69	≥ 0.7	
R Vol (ml/beat)	< 30	30-44 45-59	≥ 60	
RF (%)	< 30	30-39 40-49	≥ 50	
$EROA(cm^2)$	< 0.20	0.20-0.29 0.30-0.39	≥ 0.40	

Zoghbi et al. J Am Soc Echocardiogr 2003;16:777-802

Mitral Valvular Regurgitation Why an Integrative Approach

- Addresses difficulty and variability in quantitation
- Internal check & evaluation of hemodynamic impact (*heart remodeling*, *inflow dynamics*, *Pulmonary vein*, *and pressure*).
- Inherent cardiac remodeling with chronic significant MR

CMR Quantification of MR Severity

Mitral Reg Vol = LV stroke volume – Aortic stroke volume

Assessment of MR Severity dependent on volume comparisons only

Mitral Regurgitation CMR vs Echo (mostly flow convergence)

		MRI		
	Mild	Moderate	Severe	Total
Echo				
Mild	14	0	0	14
Moderate	19	10	2	31
Severe	20	25	13	58
Total	53	35	15	103

Uretsky S et al JACC 65:1078, 2015

Regurgitant Volume *PISA vs. CMR*

Uretsky S et al JACC 65:1078, 2015

? Why

- The only study to show an Overestimation of MR severity by Echo & PISA
- Time between Echo & CMR studies: Median 15 days
- Use of PISA alone, particularly that 57% had eccentric MR
- 47% were Degenerative MR (? some with late systolic MR, an Issue with PISA)

Mitral Regurgitation Severity Grades Agreement between Echo & CMR

	Mild MR CMR	Moderate MR CMR	Moderately Severe MR CMR	Severe MR CMR
Mild MR Echo	20	7	3	0
Moderate MR Echo	7	7	3	0
Moderately Severe MR Echo	1	6	6	2
Severe MR Echo	1	1	4	2

Agreement within 1 grade= 91% Significant discrepancy= 9%

Exact agreement, Significant discrepancy

Lopez Mattei et al. AJC Dec 2015

Relation of Regurgitant Fraction by TTE & CMR

15% Significant Discrepancy by quantitation: ¹/₂ of outliers accounted for equally by Echo and CMR ! All in secondary MR

Yes, Variability in Quantitating Regurgitation is less for CMR, but... It is not Nil!

In Pts without Regurgitation:

"pseudo regurgitation" for CMR is:
 10 ± 9 % (Gelfand, 2006), 3 ± 12 % (Lopez- Mattei, 2013)

 - "Pseudo regurgitation" for Echo is 5 ± 14 % (Lopez-Mattei, 2013)

Aortic Regurgitation

Assessment of AR Severity

Echo/Doppler Indicators of Severity

- Aortic Valve/ Root/Mechanism
- LV enlargement
- Color Doppler: jet width; vena Contracta
- Pressure half-time
- Regurgitant Volume/Fraction
- Diastolic retrograde flow in aorta

Zoghbi et al. J Am Soc Echocardiogr 2003;16:777-802

Central AR Jet

Eccentric AR Jet

Vena Contracta

Different from Jet height/LVOTValid in eccentric jets

Mild < 0.3 cm Moderate 0.3-0.6 cm Severe >0.6 cm

Assessment of AR Severity

Indicators of Severity

- Aortic Valve/ LV enlargement
 Color Doppler: Proximal jet width/CSA; Vena Contracta > PISA
- Intensity of jet by CW
- Pressure half-time
- Diastolic retrograde flow in aorta
- Regurgitant Volume/Fraction

Color Doppler CW Doppler Desc Aorta - PW

Regurgitant Fraction

$RF = \frac{Aortic SV - Systemic SV}{Aortic SV}$

Systemic SV = mitral, pulmonic or average

Grading of AR Severity *Quantitative Parameters*

	Mild	Moderate		Severe
RVo1 (mL/beat)	<30	30-44	45-59	≥ 60
RF (%)	<30	30-39	40-49	≥ 50
EROA (cm ²⁾	< 0.10	0.10-0.19	0.20-0.29	≥ 0.30

CMR in Aortic Regurgitation

Valvular Regurgitation

Towards a More Accurate Assessment of Severity...

- Have a methodical approach....
- Know advantages and limitations of various Echo/Doppler methods and which ones are reliable in a particular patient
- Learn quantitation
- Look for internal consistency of flow findings (LV size/function/Doppler)
- The more you quantitate, the more accurate you are at estimation of regurgitation severity and integration of findings
- CMR quantitation of regurgitant volume/fraction is easier and more reproducible, but lacks hemodynamic assessment