Quantifying Valvular Regurgitation

William A. Zoghbi MD, MACC
Elkins Family Distinguished Chair in Cardiac Health
Professor and Chairmen, Department of Cardiology
Houston Methodist DeBakey Heart & Vascular Center
Houston, Texas
Valvular Regurgitation

General Considerations

Importance of:

• Valvular structure/Mechanism
• Cardiac adaptation to the volume overload
• Hemodynamics: affect severity & regurgitation parameters—irrespective of the modality
• Acute vs. chronic regurgitation
Mitral Regurgitation
Mitral Regurgitation

Indicators of Severity

- Mitral valve pathology
- LV/LA size
- **Color Doppler:** Vena contracta
 - Jet Area, Flow convergence
- Mitral E; Pulmonary vein pattern
- Regurgitant flow/fraction
- **CW** density and contour
Evaluating MR Severity

An Integrative Approach

<table>
<thead>
<tr>
<th>Structural parameters</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA size</td>
<td>Normal*</td>
<td>Normal or dilated</td>
<td>Usually dilated**</td>
</tr>
<tr>
<td>LV size</td>
<td>Normal*</td>
<td>Normal or dilated</td>
<td>Usually dilated**</td>
</tr>
<tr>
<td>Mitral leaflets or support apparatus</td>
<td>Normal or abnormal</td>
<td>Normal or abnormal</td>
<td>Abnormal/ Flail leaflet/ Ruptured papillary muscle</td>
</tr>
</tbody>
</table>

Doppler parameters

<table>
<thead>
<tr>
<th>Color flow jet area*</th>
<th>Small, central jet (usually < 4 cm² or < 20% of LA area)</th>
<th>Variable</th>
<th>Large central jet (usually > 10 cm² or > 40% of LA area) or variable size wall-impinging jet swirling in LA E wave dominant* (E usually 1.2 m/s) Dense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitral inflow – PW</td>
<td>A wave dominant*</td>
<td>Variable</td>
<td>Dense</td>
</tr>
<tr>
<td>Jet density – CW</td>
<td>Incomplete or faint</td>
<td>Dense</td>
<td>Early peaking–triangular Systolic flow reversal†</td>
</tr>
<tr>
<td>Jet contour – CW</td>
<td>Parabolic</td>
<td>Usually parabolic</td>
<td></td>
</tr>
<tr>
<td>Pulmonary vein flow</td>
<td>Systolic dominance§</td>
<td>Systolic blunting§</td>
<td></td>
</tr>
</tbody>
</table>

Quantitative parameters

VC width (cm)	< 0.3	0.3-0.69	≥ 0.7	
R Vol (ml/beat)	< 30	30-44	45-59	≥ 60
RF (%)	< 30	30-39	40-49	≥ 50
EROA (cm²)	< 0.20	0.20-0.29	0.30-0.39	≥ 0.40

Mitral Regurgitation

Color Flow Doppler Evaluation
Vena Contracta
Proximal Jet Width

VC width (cm)

- Mild: < 0.3
- Moderate: 0.3 - 0.7
- Severe: > 0.7
Flow Convergence Method
Proximal Isovelocity Surface Area (PISA)

PISA radius (r)

Reg Flow = $2\pi r^2 \times Va$
EORA = $\frac{\text{Reg Flow}}{\text{Vel}_{MR}}$
Effective Orifice Regurgitant Area & Regurgitant Volume

<table>
<thead>
<tr>
<th></th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EROA (cm²)</td>
<td>< 0.2</td>
<td>0.20-0.29</td>
<td>≥ 0.4</td>
</tr>
<tr>
<td>RVo1 (mL/beat)</td>
<td>< 30</td>
<td>30-44</td>
<td>45-59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ 60</td>
</tr>
</tbody>
</table>
Flow Convergence

- Can be used semiquantitatively
- Variability during the cardiac cycle
- Less accurate in eccentric jets
- Assumptions of hemispheric geometry, less accurate in functional MR
Mitral Regurgitation

Indicators of Severity

- Mitral valve pathology
- LV/ LA size
- Color Doppler: PISA-EROA, Vena Contracta, Jet Area...Beware of eccentric jets!
- Regurgitant flow/fraction (Pulsed Doppler)
- CW density and contour
- Mitral E; Pulmonary vein flow pattern
Regurgitant Fraction/Flow

Pulsed Doppler

\[
RF = \frac{\text{Regurgitant Volume}}{\text{total LV stroke volume}}
\]

\[
RF = \frac{\text{Mitral SV} - \text{Systemic SV}}{\text{Mitral SV}}
\]

In MR, Systemic SV = aortic SV or pulmonic SV
\[
\begin{align*}
SV_{\text{LVOT}} &= CSA_{\text{LVOT}} \times VTI_{\text{LVOT}} \\
&= 0.785 \times d_{\text{LVOT}}^2 \times VTI_{\text{LVOT}} \\
SV_{\text{MV}} &= CSA_{\text{MV}} \times VTI_{\text{MV}} \\
&= 0.785 \times d_{\text{MV}}^2 \times VTI_{\text{MV}}
\end{align*}
\]
Assessment of MR Severity

Regurgitant Volume & Fraction

<table>
<thead>
<tr>
<th></th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reg Volume</td>
<td>< 30 ml</td>
<td>30-44 ml</td>
<td>45-59 ml</td>
</tr>
<tr>
<td>Reg Fraction</td>
<td>< 30%</td>
<td>30-49%</td>
<td>45-59</td>
</tr>
</tbody>
</table>

In low flow Functional, more emphasis on Reg Fraction
Regurgitant Volume & Fraction

Advantages
- Quantitative, valid in multiple jets and eccentric jets
- Provides both lesion severity and volume overload

Limitations
- Needs training; Cumbersome; wide (20%) confidence limits
- Measurement of flow at MV annulus is less reliable in calcific MV and/or annulus
Mitral Regurgitation

Indicators of Severity

- Mitral valve pathology
- LV/ LA size
- Color Doppler: PISA-EROA, Vena Contracta, Jet Area…Beware of eccentric jets!
- Regurgitant flow/fraction (Pulsed Doppler)
- CW density and contour
- Pulmonary vein flow pattern
Assessment of MR Severity

Density & Contour of MR jet by CW

Mild Moderate Severe
Pulmonary Vein Flow in Severe MR
Evaluating MR Severity

An Integrative Approach

<table>
<thead>
<tr>
<th>Structural parameters</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA size</td>
<td>Normal*</td>
<td>Normal or dilated</td>
<td>Usually dilated**</td>
</tr>
<tr>
<td>LV size</td>
<td>Normal*</td>
<td>Normal or dilated</td>
<td>Usually dilated**</td>
</tr>
<tr>
<td>Mitral leaflets or support apparatus</td>
<td>Normal or abnormal</td>
<td>Normal or abnormal</td>
<td>Abnormal/ Flail leaflet/ Ruptured papillary muscle</td>
</tr>
</tbody>
</table>

Doppler parameters

<table>
<thead>
<tr>
<th>Color flow jet area</th>
<th>Small, central jet (usually $< 4 \text{ cm}^2$ or $< 20%$ of LA area)</th>
<th>Variable</th>
<th>Large central jet (usually $> 10 \text{ cm}^2$ or $> 40%$ of LA area) or variable size wall-impinging jet swirling in LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitral inflow –PW</td>
<td>A wave dominantb</td>
<td>Variable</td>
<td>E wave dominantb (E usually 1.2 m/s)</td>
</tr>
<tr>
<td>Jet density –CW</td>
<td>Incomplete or faint</td>
<td>Dense</td>
<td>Dense and early peaking-triangular</td>
</tr>
<tr>
<td>Jet contour –CW</td>
<td>Parabolic</td>
<td>Usually parabolic</td>
<td>Systolic flow reversalf</td>
</tr>
<tr>
<td>Pulmonary vein flow</td>
<td>Systolic dominanceg</td>
<td>Systolic bluntingg</td>
<td>Systolic flow reversalg</td>
</tr>
</tbody>
</table>

Quantitative parameters*

<table>
<thead>
<tr>
<th>VC width (cm)</th>
<th>< 0.3</th>
<th>$0.3-0.69$</th>
<th>≥ 0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>R Vol (ml/beat)</td>
<td>< 30</td>
<td>$30-44$</td>
<td>≥ 60</td>
</tr>
<tr>
<td>RF (%)</td>
<td>< 30</td>
<td>$30-39$</td>
<td>≥ 50</td>
</tr>
<tr>
<td>EROA (cm²)</td>
<td>< 0.20</td>
<td>$0.20-0.29$</td>
<td>$0.30-0.39$</td>
</tr>
</tbody>
</table>

*** Quantitative parameters: VC width, R Vol, RF, EROA.

Mitral Valvular Regurgitation

Why an Integrative Approach

- Addresses difficulty and variability in quantitation
- Internal check & evaluation of hemodynamic impact (*heart remodeling, inflow dynamics, Pulmonary vein, and pressure*).
- Inherent cardiac remodeling with chronic significant MR
CMR Quantification of MR Severity

Mitral Reg Vol = LV stroke volume – Aortic stroke volume

Assessment of MR Severity dependent on volume comparisons only
Mitral Regurgitation

CMR vs Echo (mostly flow convergence)

<table>
<thead>
<tr>
<th>MRI</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Moderate</td>
<td>19</td>
<td>10</td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>Severe</td>
<td>20</td>
<td>25</td>
<td>13</td>
<td>58</td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>35</td>
<td>15</td>
<td>103</td>
</tr>
</tbody>
</table>

Uretsky S et al JACC 65:1078, 2015
Regurgitant Volume

PISA vs. CMR

Uretsky S et al JACC 65:1078, 2015
? Why

- The only study to show an Overestimation of MR severity by Echo & PISA
- Time between Echo & CMR studies: Median 15 days
- Use of PISA alone, particularly that 57% had eccentric MR
- 47% were Degenerative MR (? some with late systolic MR, an Issue with PISA)
Mitral Regurgitation Severity Grades
Agreement between Echo & CMR

<table>
<thead>
<tr>
<th></th>
<th>Mild MR CMR</th>
<th>Moderate MR CMR</th>
<th>Moderately Severe MR CMR</th>
<th>Severe MR CMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild MR Echo</td>
<td>20</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Moderate MR Echo</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Moderately Severe MR Echo</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Severe MR Echo</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Agreement within 1 grade= 91%
Significant discrepancy= 9%

Lopez Mattei et al. AJC Dec 2015
Relation of Regurgitant Fraction by TTE & CMR

15% Significant Discrepancy by quantitation:
½ of outliers accounted for equally by Echo and CMR!
All in secondary MR
Yes, Variability in Quantitating Regurgitation is less for CMR, but... *It is not Nil!*

- In Pts without Regurgitation:
 - “pseudo regurgitation” for CMR is: 10 ± 9 % (Gelfand, 2006), 3 ± 12 % (Lopez-Mattei, 2013)
 - “Pseudo regurgitation” for Echo is 5 ± 14 % (Lopez-Mattei, 2013)
Aortic Regurgitation
Assessment of AR Severity

Echo/Doppler Indicators of Severity

- Aortic Valve/ Root/Mechanism
- LV enlargement
- Color Doppler: jet width; vena Contracta
- Pressure half-time
- Regurgitant Volume/Fraction
- Diastolic retrograde flow in aorta

Vena Contracta

- Different from Jet height/LVOT
- Valid in eccentric jets

Mild < 0.3 cm
Moderate 0.3-0.6 cm
Severe >0.6 cm
Assessment of AR Severity

Indicators of Severity

- Aortic Valve/ LV enlargement
- Color Doppler: Proximal jet width/CSA; Vena Contracta > PISA
- Intensity of jet by CW
- Pressure half-time
- Diastolic retrograde flow in aorta
- Regurgitant Volume/Fraction
Mild AR

Severe AR

- Color Doppler
- CW Doppler
- Desc Aorta - PW
Regurgitant Fraction

\[RF = \frac{\text{Aortic SV} - \text{Systemic SV}}{\text{Aortic SV}} \]

Systemic SV = mitral, pulmonic or average
Grading of AR Severity

Quantitative Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVOL (mL/beat)</td>
<td><30</td>
<td>30-44</td>
<td>45-59</td>
</tr>
<tr>
<td>RF (%)</td>
<td><30</td>
<td>30-39</td>
<td>40-49</td>
</tr>
<tr>
<td>EROA (cm²)</td>
<td><0.10</td>
<td>0.10-0.19</td>
<td>0.20-0.29</td>
</tr>
</tbody>
</table>
CMR in Aortic Regurgitation

- Forward volume = 160 ml
- Regurgitant vol = 80 ml

Flow vs Time

Legend:
- Data
- Spline (+/- 1)
Valvular Regurgitation
Towards a More Accurate Assessment of Severity...

• Have a methodical approach....

• Know advantages and limitations of various Echo/Doppler methods and which ones are reliable in a particular patient

• Learn quantitation

• Look for internal consistency of flow findings (LV size/function/Doppler)

• The more you quantitate, the more accurate you are at estimation of regurgitation severity and integration of findings

• CMR quantitation of regurgitant volume/fraction is easier and more reproducible, but lacks hemodynamic assessment