Pathophysiology of Acute Heart Failure and Cardiorenal Interactions

Feras Bader, MD, MS, FACC
Associate Professor of Medicine
Director, Heart Failure and Transplant
Cleveland Clinic Abu Dhabi
Chairman, Heart Failure Working Group of the Emirates Cardiac Society
Acute Decompensated Heart Failure (ADHF)

A syndrome (generally) characterized by the acute onset of volume overload and symptoms of congestion in the setting of cardiac dysfunction.
Epidemiology of Acute Heart Failure Syndromes
Hospitalizations Due to Heart Failure Continue to Rise

- Heart failure is a progressive disease.

- Incidence of heart failure is rising.
 - Population is aging.
 - Improved survival with acute myocardial infarction.

- Heart failure not managed appropriately during hospitalization and after discharge.

- Patients do not adhere to diet and drugs.
Three-phase terrain of lifetime readmission risk after heart failure hospitalization.

Hospitalizations

Median Survival Decreases After Each Heart Failure Related Hospitalization\(^5\)

Average age of heart failure hospitalization in community = 74.77 years

Important Concepts in ADHF
Pathophysiology
Clinical Presentation

Pulmonary Capillary Wedge Pressure (mmHg)

- 15-18 mmHg

Cardiac Index (L/min/m²)

- 5
- 4
- 3
- 2
- 1

2.2 L/min/m²

Subset I (Normal)

“Warm and dry”

Subset II (Congestion)

“Warm and wet”

Subset III (Hypoperfusion)

“Cold and dry”

Subset IV (Congestion and hypoperfusion)

“Cold and wet”

PCWP = pulmonary capillary wedge pressure
CI = cardiac index
SVR = systemic vascular resistance

Adapted from Nohria A et al. JAMA. 2002; 287:628-40.
Event-free Survival According to the Presence or Absence of Elevated JVP and S3

Hospital Mortality, Time to Treatment, and BNP Level

(J Am Coll Cardiol 2008;52:534–40)
Efficacy of Vasopressin Antagonism in Heart Failure: Outcome Study with Tolvaptan (EVEREST) trial.

- More than 4,000 patients with ADHF, NYHA class III – IV, randomized to tolvaptan 30 mg once daily or placebo for at least 60 days.
Average Loop Diuretic Dose in the EVEREST Study

Loop Diuretic Dose and Adverse Outcomes in ADHF: EVEREST Study

30-Day Outcomes by Discharge Congestion Status and Diuretic Dose: EVEREST Study

The concept of Cardiorenal syndrome (CRS)- Type 1

• Worsening of renal function in the setting of ADHF management. True CRS (associated with poor prognosis and worse survival) is manifested by:
 • Serum Cr worse by $\geq 25\%$ or 0.3 mg/dL.
 • Persistent clinical congestion.
 • Persistent worsening of renal function through 30 days.
 • When accompanied by hemoconcentration, it is an indication of aggressive diuresis and is associated with better survival.
 • “Cardiorenal rescue” is improving renal function in the setting of decongestion.
Cardiac Index?

Reduced Cardiac Index Is Not the Dominant Driver of Renal Dysfunction in Heart Failure

Jennifer S. Hanberg, BA, a Krishna Sury, MD, b F. Perry Wilson, MD, MSCE, a,h,c Meredith A. Brisco, MD, MSCE, Tariq Ahmad, MD, MPH, b Jozine M. ter Maaten, MD, e J. Samuel Broughton, BS, a Mahlet Assefa, BS, a W.H. Wilson Tang, MD, f Chirag R. Parikh, MD, PhD, a,h,c Jeffrey M. Testani, MD, MTR a,b

JACC 2016; 67 (19): 2199-208
Clinical Implications of Intrarenal Hemodynamic Evaluation by Doppler Ultrasonography in Heart Failure

Noriko Iida, BA, Yoshihiro Seo, MD, Seika Sai, MD, Tomoko Machino-Ohtsuka, MD, Masayoshi Yamamoto, MD

TABLE 1	Clinical Characteristics and Echocardiographic and Intrarenal Doppler Ultrasound Data																
	Catheterization data	PCWP, mm Hg	Mean PAP, mm Hg	Mean RAP, mm Hg	Cardiac index, l/min/m²	Total (n = 217)	RI < 0.70 (n = 113)	RI ≥0.70 (n = 104)	p Value	IRVF Continuous (n = 117)	Biphasic (n = 51)	Monophasic (n = 49)	p Value	ANOVA			
	n = 103	13 ± 7.4	26 ± 13	7.5 ± 4.7	2.8 ± 0.8	11 ± 6.4	13 ± 6.7	19 ± 6.4*	<0.001	23 ± 9.3*	32 ± 14	31 ± 7.8	0.03	5.4 ± 2.5	9.5 ± 3.5†	15 ± 4.3*	<0.001
	n = 57	11 ± 6.6	25 ± 13	6.6 ± 3.9	2.8 ± 0.8	11 ± 6.4	13 ± 6.7	19 ± 6.4*	<0.001	23 ± 9.3*	32 ± 14	31 ± 7.8	0.03	5.4 ± 2.5	9.5 ± 3.5†	15 ± 4.3*	<0.001
	n = 46	16 ± 7.6	26 ± 13	8.7 ± 5.3	2.7 ± 0.7	11 ± 6.4	13 ± 6.7	19 ± 6.4*	<0.001	23 ± 9.3*	32 ± 14	31 ± 7.8	0.03	5.4 ± 2.5	9.5 ± 3.5†	15 ± 4.3*	<0.001
	n = 65	13 ± 6.7	26 ± 13	8.7 ± 5.3	2.7 ± 0.7	11 ± 6.4	13 ± 6.7	19 ± 6.4*	<0.001	23 ± 9.3*	32 ± 14	31 ± 7.8	0.03	5.4 ± 2.5	9.5 ± 3.5†	15 ± 4.3*	<0.001
	n = 21	19 ± 6.4*	31 ± 7.8	15 ± 4.3*	2.7 ± 0.8	11 ± 6.4	13 ± 6.7	19 ± 6.4*	<0.001	23 ± 9.3*	32 ± 14	31 ± 7.8	0.03	5.4 ± 2.5	9.5 ± 3.5†	15 ± 4.3*	<0.001
	n = 17	2.7 ± 0.8	15 ± 4.3*	2.7 ± 0.8	2.7 ± 0.8	11 ± 6.4	13 ± 6.7	19 ± 6.4*	<0.001	23 ± 9.3*	32 ± 14	31 ± 7.8	0.03	5.4 ± 2.5	9.5 ± 3.5†	15 ± 4.3*	<0.001

PCWP: Pulmonary Capillary Wedge Pressure, Mean PAP: Mean Pulmonary Artery Pressure, Mean RAP: Mean Right Artery Pressure, Cardiac index: Cardiac Output
Kaplan-Meier Estimate Curves of Four Groups According to IRVF and Parameters of CVP

Kaplan-Meier curves of four classifications based on the IRVF continuous and discontinuous patterns and parameters of CVP: RAP (A) and the Q of S/D ratio (B).

CVP = central venous pressure; Q = quartile; RAP = right atrial pressure; S/D = systolic and diastolic hepatic vein flow velocities ratio.
Is Worsening Renal Function an Ominous Prognostic Sign in Patients With Acute Heart Failure?
The Role of Congestion and Its Interaction With Renal Function

Marco Metra, MD; Beth Davison, PhD; Luca Bettari, MD; Hengrui Sun, MD; Christopher Edwards, BS; Valentina Lazzarini, MD; Barbara Piovanelli, MD; Valentina Carubelli, MD; Silvia Bugatti, MD; Carlo Lombardi, MD; Gad Cotter, MD; Livio Dei Cas, MD

Background—Worsening renal function (WRF), traditionally defined as an increase in serum creatinine levels ≥0.3 mg/dL, is a frequent finding in patients with acute heart failure (AHF) and has been associated with poorer outcomes in some but not all studies. We hypothesized that these discrepancies may be caused by the interaction between WRF and congestion in AHF patients.

Methods and Results—We measured serum creatinine levels on a daily basis during the hospitalization and assessed the persistence of signs of congestion at discharge in 599 consecutive patients admitted at our institute for AHF. They had a postdischarge mortality and mortality or AHF readmission rates of 13% and 43%, respectively, after 1 year. Patients
Summary

• ADHF is a difficult clinical condition with high morbidity and mortality. Long-term outcomes are worse with each admission.

• ADHF has a complex pathophysiology, primarily related to neurohormonal activation.

• Congestion is likely the main contributor in the development of CRS. It is also a critical prognostic element.

• The key approach is relieving congestion, sometimes even at the expense of mild renal dysfunction; and initiating therapies known to improve long-term outcomes.
Thank You