Stable CAD, NSTE-ACS, and STEMI: Three Challenging Patients and Antithrombotic Approaches

Glenn N. Levine, MD, FAHA, FACC
Professor of Medicine, Baylor College of Medicine
Director, Cardiac Care Unit, Michael E. DeBakey Medical Center
Chair, ACC/AHA Task Force on Clinical Practice Guidelines
A Patient With Stable CAD

- 59 year old man living in Brooklyn. Smokes 2 PPD.
- Past medical history of stroke and subsequent complex seizures requiring multi-drug therapy
- Class II (mild exertional) angina
- HR 90 bpm and BP 140/90 on metoprolol 25 mg BID
- Nuclear stress test ordered by his primary physician showed mild (9%) inferior wall ischemia; referred for cardiac cath
- Diagnostic catheterization at a local hospital showed a 70% mid RCA lesion (and mild LAD and left circumflex disease). Elective stent implantation at a PCI-capable hospital scheduled in one week and he is prescribed clopidogrel to begin taking in preparation for the procedure.
A Patient With Stable CAD

How would you treat this patient?

1) Placement of a bare metal stent (BMS)
2) Placement of a metallic drug-eluting stent (DES)
3) Placement of a bioresorbable scaffold DES
4) Intensify medical therapy
A Patient With Stable CAD

- Platelet function testing just before the stent implantation (one week after clopidogrel prescribed) revealed a PRU=242 (indicating high platelet reactivity)

How would you treat the patient?

1) Continue clopidogrel
2) Change to ticagrelor
3) Change to prasugrel
4) Abort the planned stent procedure
A Patient With Stable CAD

• Patient undergoes stenting with a current generation metallic DES and is treated with clopidogrel 75 mg daily
• 43 days post-DES patient suffers sub-acute stent thrombosis
• Thrombectomy and IVUS-guided further stent dilation performed
• The patient is placed on ticagrelor 90 mg BID
• 37 days later the patient again presents with stent thrombosis
How Should The Patient Next Be Managed?

1) Try clopidogrel 150 mg bid
2) Continue ticagrelor 90 mg BID
3) Change to prasugrel 10 mg qD
4) Warfarin
5) Direct oral anticoagulant (DOAC)
6) Hypercoagulability workup
Does the patient have a hypercoagulable state?

Inherited hypercoagulable disorders
- Factor V Leiden
- Prothrombin G20210A
- Antithrombin deficiency
- Protein C deficiency
- Protein S deficiency

Acquired hypercoagulable states
- Antiphospholipid syndrome
- Heparin-induced thrombocytopenia
- Myeloproliferative neoplasms
- Paroxysmal nocturnal hemoglobinuria
- Cancer

Antiphospholipid Syndrome
- Antiphospholipid antibody (APA)
- Antibody to B2 glycoprotein-1
- Lupus anticoagulant
- Anticardiolipin antibody

Positive test on 2 or more occasions at least 12 weeks apart

A Patient With Stable CAD

• Thrombectomy again performed and a bioresorbable polymer DES placed within the stent and aggressively dilated
• The patient is placed on prasugrel 10 mg qD

• 3 weeks later the patient presents with massive intracranial hemorrhage
A Patient With Stable CAD

‘Resistance’ to Antiplatelet Therapy

- Genetic
- Environment
- Non-adherence

- Adverse effects
- Complex Regimens
- Expense
- Uneducated
- Priorities
- Unknown (30%)

Up to 28% of patients fail to fill their initial antiplatelet prescriptions

Kolandaivelu K and Bhatt DL. Nat Rev Cardiol. 2010.
Metabolism of Ticagrelor

<table>
<thead>
<tr>
<th>Strong CYP3A inhibitors (increase ticagrelor blood levels and risk of bleeding)</th>
<th>Potent inducers of CYP3A (decrease ticagrelor blood levels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarithromycin</td>
<td>Rifampin</td>
</tr>
<tr>
<td>Itraconazole, Ketoconazole, Voriconazole</td>
<td>Dexamethasone</td>
</tr>
<tr>
<td>Atazanavir, indinavir</td>
<td>Phenytoin</td>
</tr>
<tr>
<td>Nefazodone</td>
<td>Carbamazepine</td>
</tr>
<tr>
<td></td>
<td>Phenobarbital</td>
</tr>
</tbody>
</table>
Intracranial Hemorrhage in Patients with Prior Stroke/Transient Ischemic Attack:

Net (ischemic + bleeding) harm (↑37%) with prasugrel vs clopidogrel in those with prior stroke (CVA) or transient ischemic attack (TIA)

<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>III:</td>
<td>Harm</td>
<td>Prasugrel should not be administered to patients with a prior history of stroke or TIA.</td>
</tr>
</tbody>
</table>
A Patient With Stable CAD

- Class II (mild exertional) angina
- HR 90 bpm and BP 140/90 on metoprolol 25 mg BID

Great drugs, great tests, and great devices do not trump good clinical judgment!

The pen (prescribing medical therapy) is mightier (or often at least as good as) the sword (stent).
• 76 year old female with untreated hypertension (SBP=170 mmHg), diabetes and LDL=187
• She presents with atrial fibrillation and non-ST-segment elevation acute coronary syndrome (NSTE-ACS) (troponin=1.3)
• Undergoes drug-eluting stent (DES) of a 90% left circumflex artery stenosis
• HAS-BLED Score = 3 (hypertension, age, antiplatelet therapy)
How would you treat this patient?

1) Dual antiplatelet therapy (DAPT) alone
2) Double therapy (oral anticoagulant + single antiplatelet therapy)
3) Triple therapy (oral anticoagulant + dual antiplatelet therapy)
“Real World” Bleeding Risks
Adjusted HR in 82,854 patients with AF in a Nationwide Danish Registry

<table>
<thead>
<tr>
<th>Treatment</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warfarin monotherapy</td>
<td>1 [Reference]</td>
</tr>
<tr>
<td>Aspirin monotherapy</td>
<td>0.93 (0.88-0.98)</td>
</tr>
<tr>
<td>Clopidogrel monotherapy</td>
<td>1.06 (0.87-1.29)</td>
</tr>
<tr>
<td>Aspirin + clopidogrel</td>
<td>1.66 (1.34-2.04)</td>
</tr>
<tr>
<td>Warfarin + aspirin</td>
<td>1.83 (1.72-1.96)</td>
</tr>
<tr>
<td>Warfarin + clopidogrel</td>
<td>3.08 (2.32-3.91)</td>
</tr>
<tr>
<td>Triple therapy</td>
<td>3.70 (2.89-4.76)</td>
</tr>
</tbody>
</table>

Hansen ML et al. Ann Int Med 2010
Triple vs Double Therapy Post-PCI
In patients with an indication for oral anticoagulant therapy

Dewilde WJM. Lancet 2013
• Significant reductions in bleeding (TIMI major + TIMI minor + bleeding requiring medical attention) with both rivaroxaban arms (16.8%, 18.0% vs 26.7%)
• Reduction in all-cause hospitalization for an adverse event with both rivaroxaban regimens
• No difference in ischemic events (CV death, MI or stroke)
• Caveats:
 • Given study design, reductions in bleeding would be expected
 • No reduction in TIMI major or minor bleeding; results driven by reduction in “bleeding requiring medical attention”
 • Study not powered to detect significant differences in ischemic endpoints
 • 2.5 mg rivaroxaban not available in the US and cutting 10 mg tablet in quarters impractical

Gibson CM et al., NEJM 2016; Gibson CM et al. Circulation 2016
- 2,725 patients with AF and either SIHD or ACS undergoing PCI randomized to:
 1. Triple therapy (VKA + P2Y$_{12}$ + ASA)
 2. Dabigatran 150mg + P2Y$_{12}$
 3. Dabigatran 110mg + P2Y$_{12}$

- In triple therapy group, ASA discontinued after 1 month (BMS) or 3 months (DES)
- 88% clopidogrel; 12% ticagrelor
- Mean duration of f/u = 14 months

ISTH major bleeding or clinically relevant non-major bleeding

Death, thrombotic event, or unplanned revascularization

Cannon CP et al. NEJM 201
A Patient with NSTE-ACS

When, if ever, should ALL antiplatelet therapy be completely stopped?

1) Never
2) At the latest 12 months after the coronary stent procedure
CORONOR

- French prospective multicenter observational study
- 4,184 patients with stable CAD, free from any prior MI (62%) or revasc (86%) >1 year
- 7% with AF, 11% treated with warfarin
- Antiplatelet therapy: ASA 77%; clopidogrel 21%; ASA+Clop 21%
- Major bleeding defined as BARC type ≥3 events

MACE

\[
\text{Logrank } P = 0.554 \\
\text{HR} = 0.84\ [0.47\text{-}1.50] \\
\text{Adjusted }^* \text{ HR} = 1.15\ [0.58\text{-}2.27]
\]

Warfarin alone

Warfarin plus antiplatelet Rx

Hamon M et al. JACC 2014

Major Bleeding

\[
\text{Logrank } P < 0.0001
\]

Warfarin alone

Warfarin plus antiplatelet Rx
Antithrombotic Therapy in AF + Stable CAD: Danish Nationwide Cohort Study

Adjusted HR in 8700 stable CAD+AF patients, \(\geq 1 \) year from MI or PCI

<table>
<thead>
<tr>
<th>MI/Coronary Death</th>
<th>Thromboembolism</th>
<th>Serious Bleeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warfarin+ASA+Clop</td>
<td>1.76</td>
<td>1.31</td>
</tr>
<tr>
<td>Warfarin+Clop</td>
<td>1.53</td>
<td>1.56</td>
</tr>
<tr>
<td>Warfarin+ASA</td>
<td>1.12</td>
<td>0.86</td>
</tr>
<tr>
<td>Warfarin</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>ASA+Clop</td>
<td>2.24</td>
<td>1.77</td>
</tr>
<tr>
<td>Clop</td>
<td>1.73</td>
<td>1.73</td>
</tr>
<tr>
<td>ASA</td>
<td>1.73</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Adjusted HR for combined ischemic+bleeding events significantly lower for warfarin alone than any other therapy combinations

Lamberts M et al. Circulation 2014
Valgimigli M et al. 2017 ESC Focused Update on DAPT. Eur Heart J 2017

Take-home Messages So Far From Studies of Double and Triple Therapy in Patients with AF Undergoing PCI

- Not surprisingly, double therapy (oral anticoagulant + single antiplatelet therapy) leads to less bleeding than triple therapy
- So far, in a total of 2,732 patients (WOEST, PIONEER, RE-DUAL) randomized to double therapy (oral anticoagulant + single antiplatelet therapy) post-PCI, no glaring signal of increased stent thrombosis or increased cardiac ischemic events

1. Keep triple therapy as short as possible (1-6 months)
2. Double therapy (oral anticoagulant + single antiplatelet therapy) reasonable in high bleeding risk and perhaps average bleeding risk patients as well
3. Strongly consider/routinely use PPI and other measures to decrease bleeding risk
4. Strongly consider stopping all antiplatelet therapy after at most 1 year after ACS or PCI in many in not most patients
A Patient with STEMI

- 59 year old woman who smokes 3 PPD presents with extensive anterior wall STEMI.
- She undergoes primary PCI with placement of 2 DES in proximal and mid LAD.
- Diagnostic catheterization at the time also reveals moderate RCA lesion; FFR two days later of the RCA is 0.93.
A Patient with STEMI

- Echocardiography done the following day reveals akinetic anterior wall and dyskinetic apex with EF=25%
- Her HAS-BLED score = 2 (assuming antiplatelet therapy)
- You weigh your concern about LV thrombus formation against her risk of bleeding
A Patient with STEMI

What antiplatelet and/or oral anticoagulant therapy (OAT) should she be treated with?

1) DAPT only
2) Double therapy (OAT + single antiplatelet Rx)
3) Triple therapy (OAT + DAPT)
Prevention of LV Mural Thrombus After STEMI: Current Guidelines

<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
<th>ACC/AHA Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIb</td>
<td>C</td>
<td>Anticoagulant therapy* may be considered for patients with STEMI and anterior apical akinesis or dyskinesis</td>
</tr>
</tbody>
</table>

*Text states therapy can be limited to 3 months

ESC 2012 STEMI Guideline Text (no formal recommendations)

- Anticoagulation should be considered in patients with large anterior wall motion abnormalities, if they are at low risk of bleeding, to prevent the development of thrombi.

No specific prevention recs or text in ESC 2017 STEMI guideline

LV Thrombus After Acute MI: Sobering Study Data

- In patients with anterior STEMI, reported LV thrombus rates detected by echo in most studies are in the range of 6-30%
- Up to 50% of LV thrombus are not identified on the initial echo but only on subsequent echo
- Compared to MRI for detection of thrombi, echo has a sensitivity of only 21-24%
- In patients with anterior STEMI treated with primary PCI and DAPT, reported LV thrombus rates detected by echo range from 4-22%

Incidence of LV Thrombus Among Patients with Anterior STEMI
A Patient with STEMI

- You choose to treat the patient only with DAPT
- Follow-up echo 40 days later to re-assess left ventricular function reveals a mobile left ventricular thrombus

How would you treat the patient now?
1) Continue just DAPT
2) Add warfarin
3) Add a new/novel/direct) oral anticoagulant (NOAC/DOAC)
Direct Oral Anticoagulants (DOAC) vs Warfarin in Major Trials of Thromboembolic Prevention and Treatment

<table>
<thead>
<tr>
<th>Study</th>
<th>Indication</th>
<th>DOAC</th>
<th>Efficacy Outcome with DOAC</th>
<th>Major Bleeding with DOAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE-LY</td>
<td>Atrial Fib</td>
<td>Dabigatran 150 mg BID</td>
<td>Superior</td>
<td>Similar</td>
</tr>
<tr>
<td>RE-LY</td>
<td>Atrial Fib</td>
<td>Dabigatran 110 mg BID</td>
<td>Similar</td>
<td>Less</td>
</tr>
<tr>
<td>ROCKET-AF</td>
<td>Atrial Fib</td>
<td>Rivaroxiban 20 mg qD</td>
<td>Similar</td>
<td>Similar</td>
</tr>
<tr>
<td>ARISTOTLE</td>
<td>Atrial Fib</td>
<td>Apixaban 5 mg BID</td>
<td>Superior</td>
<td>Less</td>
</tr>
<tr>
<td>ENGAGE-AF</td>
<td>Atrial Fib</td>
<td>Edoxaban 60 mg qD</td>
<td>Similar</td>
<td>Less</td>
</tr>
<tr>
<td>ENGAGE-AF</td>
<td>Atrial Fib</td>
<td>Edoxaban 30 mg qD</td>
<td>Similar</td>
<td>Less</td>
</tr>
<tr>
<td>RECOVER-I</td>
<td>VTE Rx</td>
<td>Dabigatran 150 BID</td>
<td>Similar</td>
<td>Similar</td>
</tr>
<tr>
<td>RECOVER-II</td>
<td>VTE Rx</td>
<td>Dabigatran 150 BID</td>
<td>Similar</td>
<td>Similar</td>
</tr>
<tr>
<td>RE-MEDY</td>
<td>VTE Rx</td>
<td>Dabigatran 150 BID</td>
<td>Similar</td>
<td>Similar</td>
</tr>
<tr>
<td>Hokusai-VTE</td>
<td>VTE Rx</td>
<td>Edoxaban 60 mg qD</td>
<td>Similar</td>
<td>Similar</td>
</tr>
<tr>
<td>EINSTEIN DVT</td>
<td>VTE Rx</td>
<td>Rivaroxiban 20 mg qD</td>
<td>Similar</td>
<td>Similar</td>
</tr>
<tr>
<td>EINSTEIN PE</td>
<td>PE Rx</td>
<td>Rivaroxiban 20 mg qD</td>
<td>Similar</td>
<td>Less</td>
</tr>
</tbody>
</table>
Challenging Patients With Atherothrombotic Disease
How Much of the ACS Patient Are We Really Treating With Coronary Stenting?

Slide courtesy of Steven Steinhubl
Approximate Absolute Mortality Reduction With Medicines and Interventions

- PCI vs Med Rx in SIHD: 0%
- Double vs Triple Rx in PCI/AF: 0%
- Long vs Standard Duration DAPT: 0%
- Culprit-Only vs MV PCI in STEMI: 0%
- Ticagrelor vs Clopidogrel in ACS: 1%
- High Dose Statin For 2° Prevention: ≥3-4%
- Optimal HTN Rx For 2° Prevention: ≥3-5%
- ACEI, ARB or ARNI in HFrEF: ≈4-7%
- Beta Blockers in HFrEF: ≈11%
- Smoking Cessation: ≥9-17%
Acute Coronary Syndrome (ACS) Patients NOT Taking Evidence-Based Therapy At 1-Year

<table>
<thead>
<tr>
<th>Therapy</th>
<th>% of Patients NOT Taking Prescribed Therapies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td>13.3%</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>66.7%</td>
</tr>
<tr>
<td>Beta Blocker</td>
<td>25%</td>
</tr>
<tr>
<td>ACE inhibitor</td>
<td>39.7%</td>
</tr>
<tr>
<td>Statin</td>
<td>17.8%</td>
</tr>
</tbody>
</table>

Medication Adherence

• One in three patients fail to fill their prescriptions
• Sixty percent of patients cannot correctly name their medications
• Approximately three of every four patients report they do not consistently take their medications as directed
• 20% of patients take other people’s medications

ADHERENCE MATTERS:
Impact of Adherence to Guideline-directed Therapies on 6-month Survival in the GRACE Registry of Patients with ACS

Number of Therapies (vs 0 or 1 therapy) Odds Ratio (95% CI)
2 therapies
3 therapies
4 therapies
5 therapies
6 therapies
7 therapies
8 therapies

OR
0 0.5 1 1.5 2

 Odds Ratio for 6-month Mortality
Secondary Prevention

<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A</td>
<td>Lipid management with lifestyle modification and lipid-lowering (primarily high dose, high potency statin) pharmacotherapy</td>
</tr>
<tr>
<td>I</td>
<td>A</td>
<td>Blood pressure control (<130/80)</td>
</tr>
<tr>
<td>I</td>
<td>A</td>
<td>Complete smoking cessation</td>
</tr>
<tr>
<td>I</td>
<td>B</td>
<td>Regular aerobic physical activity (30-60 minutes, 5-7 times/week)</td>
</tr>
<tr>
<td>I</td>
<td>A</td>
<td>ACEI/ARB/ARNI, beta blockers, and aldosterone in HFrEF</td>
</tr>
</tbody>
</table>