
Francis Marchlinski, MD
Richard T and Angela Clark President’s Distinguished Professor
Director Cardiac Electrophysiology
University of Pennsylvania Health System
Philadelphia, PA
Francis.marchlinski@uphs.upenn.edu
Disclosure of Relationships

Francis E. Marchlinski, MD,

Consulting Fees/Honoraria: Abbot/St. Jude Medical, Biotronik, Biosense Webster, Inc., Infobionics, Medtronic, Inc., Boston Scientific Corp.

Research Grants: Medtronic, Inc., Abbot/St. Jude Medical, Biosense Webster, Inc.
Atrial Fibrillation

Patient Selection/Ablation Outcome: AF Classification

✓ Classify the patient based on the most frequent AF clinical pattern

Excellente response

- **Paroxysmal**
 - Duration: < 7 days
 - Usually spontaneous termination/early cardioversion

- **Persistent** (Early Persistent < 3mos – better response to AF ablation – before remodeling*)
 - Duration: > 7 days – 1 year
 - Cardioversion: pharmacological or electrical

- **Longstanding Persistent/Permanent**
 - More than 1 year
 - Cardioversion – fails to restore sinus rhythm for any meaningful duration

Calkins et al AF Ablation Consensus Document Heart Rhythm Oct 2017
Class I - “Is Indicated”

1. For **symptomatic** paroxysmal AF **refractory or intolerant** to at least 1 class I or III antiarrhythmics. *(Level of Evidence: A)*

2. Prior to AF catheter ablation, **assessment of the procedural risks and outcomes relevant to the individual patient is recommended**. *(Level of Evidence: C)*

Paroxysmal AF – Catheter Ablation Outcome

Pulmonary Vein Isolation Multicenter Randomized Prospective Study Failed Initial Drug Therapy (159pts)

All Recurrent AT/AF

63%

17%

Ablation Group (6.8% risk, n=103)

- 1 pericarditis
- 1 pulmonary edema
- 1 pericardial effusion (no tx needed)
- 5 vascular complications
- No Stroke/Embolism, Tamponade, Atrio-Esophageal fistula, PV stenosis, or Phrenic nerve paralysis

AAD group (17.9% risk, n=56)

- 3 life-threatening ventricular arrhythmias
- 7 disabling symptoms requiring drug withdrawal

PVI - How?

No Stroke/Embolism, Tamponade, Atrio-Esophageal fistula, PV stenosis, or Phrenic nerve paralysis

Wilber D et al, JAMA, 2010
Individual Risk Assessment Before Ablation?
Extreme Obesity, Age >80 – More Groin Complications
Role of Experience on Ablation Complications

U.S. National Inpatient Sample: 93,801 AF patients treated with catheter ablation 2000-2010; 20% U.S. hospitals sampled

- In hospital complications assessed by ICD 9 codes
 1. 81% of AF ablations done by low volume operators - perform < 25/yr
 2. Acute complications, inversely related to operator/program volume

Class I - "Is Indicated"

1. For **symptomatic** paroxysmal AF refractory or intolerant to at least 1 class I or III antiarrhythmics. (Level of Evidence: A)

2. Prior to AF catheter ablation, assessment of the procedural risks and outcomes relevant to the individual patient is recommended. (Level of Evidence: C)

Class II A - "Is reasonable" first line therapy

In patients with recurrent **symptomatic** paroxysmal AF, prior to therapeutic trials of antiarrhythmic drug therapy, after weighing risks and outcomes of drug and ablation therapy relevant to the individual patient. (Level of Evidence: B)

FIRST LINE TREATMENT OF PAROXYSMAL AF
(RAAFT 2 TRIAL – 2 YEAR FOLLOW-UP)

Time to Any AF/AFL/AT

- No deaths, No strokes
- 43% of patients with meds had recurrent AF with crossover to AF ablation at 1 yr versus only 9% of patients with ablation had AAA drugs added

FIRE AND ICE AF Clinical Trial

- Modified ITT analysis:
 - HR [95% CI] = 0.96 [0.76-1.22]; p = 0.0004
 - Non-inferiority hypothesis met

Class IIa - “Is reasonable”

1) For patients with **symptomatic persistent AF** refractory or intolerant to at least 1 class I or III antiarrhythmic medication (157,161–163). *(Level of Evidence: A)*

Class IIa “Is reasonable” 1st line therapy—for **symptomatic persistent AF** before class I or 3 antiarrhythmic drug therapy—(change from IIB to IIA in 2017 update -Level of Evidence: C)*

Class IIb - “May be Considered” For **symptomatic long-standing (>12 months) persistent AF** refractory or intolerant to at least 1 class I or III antiarrhythmic medication when a rhythm-control strategy is desired (154,167). *(Level of Evidence: B)*

Clinical Efficacy for **Longstanding Persistent AF (>1yr)**

Antral PV Isolation + Non PV Trigger RF Ablation

N=130 pts followed for >1 year

- Long term control in ~ 50% without AADs
- ~ 72% with AADs
- Repeat ablation required in 28%

Persistent AF Catheter Ablation - Target Substrate to Further Improve Outcome?

- ? Make lines to divide LA
- ? Target fractionated Egs
- ? Isolate Post LA
- ? Isolate the SVC, CS, LAA
- ? Ganglionated plexi ablation
- ? Target rotors

PVI plus non PVI triggers

Which Technique?

Which Patients?
STAR AF II Results - Primary Outcome in Persistent AF (Verma et al)

Documented AF > 30 seconds after one procedure with or without AAD

48 experienced centers in 12 countries.

No benefit of lines or fractionated electrogram ablation

1:4:4 ratio
Paroxysmal or Persistent AF

Why does ablation fail?

Make PV Isolation More Permanent with First Ablation (Improve stability)
- JET Ventilation
- Sheaths for stability
- Contact Force Sensing

Reconnected PV
Reisolation can prevent AF (80-90%)!
Jet Ventilation and Sheaths to Improve Stability and Improve PVI Outcome

Fewer Recurrences

Fewer Reconnections

P <0.006

Hutchinson MD et al Heart Rhythm 2013;10:347–353
Risk Factor Modification (RFM)

The ARREST-AF Cohort Study

Adapted from Pathak R J .. Sanders P Am Coll Cardiol May 26 2015;65:2159-2169.

Impact of RFM on AF Ablation Outcome

- **Modifiable Risk Factors**
 - Hypertension
 - Diabetes (glycemic control)
 - Sleep apnea
 - Obesity
 - Excess alcohol use

Aggressive Risk Factor Modification in AF Should be Standard of Care

Adapted from Pathak RJ Sanders P Am Coll Cardiol May 26 2015;65:2159-2169.
Reversible Disease States due to AF??

54 y/o with increase in LA and severity of MR associated with long lived but self terminating AF over the last two years??

Is the worsening MR due to the AF?
Functional Mitral Regurgitation Due to AF: Reversal with AF Ablation (Retrospective Cohort Study – 53 pts in each group)

Only 24% remained mod/severe

Post successful ablation
No/minimal MR with
- Greater ↓↓ LA size
- Greater ↓↓ Annular dimension

54 y/o with increase in LA and severity of MR associated with long lived but self terminating AF over the last two years??
- Effort to control AF may reverse the MR

Post Ablation Echo
Pre Ablation Echo

Post Ablation Rhythm
Pre Ablation Rhythm

Low EF and AF

- 66 y/o man with persistent AF (X 6mos) reasonable rate control (80-90 at rest) on digoxin, metoprolol(75bid), diltiazem(120qd).
- Some exercise intolerance - shortness of breath, palpitations (Heart rate 110-140)
- Echo – LVEF 38% //LA 4.7
- Failed two CV off /on sotalol

Is the low EF due to AF/Role of ablation?
Atrial Fibrillation Ablation Effect on LV Ejection Fraction

Improvement in All
Normalization in 94%

41% Improvement in All
Normalized in 94%

Frequent paroxysmal AF (34 pts) or "apparent" rate control with persistent (14 pts) AF

66 y/o man with persistent AF (X 6mos) reasonable rate control (80-90 at rest) EF 38% with mild exertional dyspnea

Strong consideration for catheter ablation for improvement in symptoms + LV function!!
Atrial Fibrillation with Conversion Pauses (Tachy-Brady Syndrome -TBS). - Role of Ablation?

Historic treatment standard - Antiarrhythmics + Pacemaker

New recommendation - Catheter ablation + No Pacemaker (2A)

Calkins et al Heart Rhythm Oct 2017

Inada, K., et al Europace, 2014. 16(2): 208-13

Functional MR

LV dysfunction

Conversion Pauses after Afib – treat by eliminating Afib

Late recurrences

- 56 y/o male with symptomatic Persistent AF – 1 -2 AF per month for 2 years – undergoes AF ablation. He experiences one AF episode 18mos later requiring CV – wants to know prognosis?
430 consecutive patients with AF recurrence after ablation + 3mo blanking period

(First ablation 2004 - 2008)

At least 18 mos (mean 41 ± 19 mos) of additional follow-up

Time of 1st Recurrence

- Early: 3 – 6 mos
 - 245 pts
- Late: 6 – 12 mos
 - 118 pts
- Very Late: >12 mos
 - 76 pts

From Gaztañaga L et al Heart Rhythm 2013 Jan;10(1):2-9
No or Rare* AF during Long Term Follow-up
Mean 41 ± 19 months

56 y/o male with symptomatic Persistent AF – 1-2 episodes per month for 2 years undergoes AF ablation. He then experiences one AF episode at 18 mos/CV – wants to know prognosis? – Likely rare episodes!

Gaztañaga L et al Heart Rhythm 2013 Jan;10(1):2-9
<table>
<thead>
<tr>
<th>Condition</th>
<th>Recommendation</th>
<th>Class</th>
<th>LOE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive heart failure</td>
<td>It is reasonable to use similar indications for AF ablation in selected patients with heart failure as in patients without heart failure.</td>
<td>2A</td>
<td>B-R</td>
<td>233-237, 384, 386-395, 396-398, 401-404, 1042, 1044</td>
</tr>
<tr>
<td>Older patients (>75 years of age)</td>
<td>It is reasonable to use similar indications for AF ablation in selected older patients with AF as in younger patients.</td>
<td>2A</td>
<td>B-NR</td>
<td>385, 1043, 1044</td>
</tr>
<tr>
<td>Hypertrophic cardiomyopathy</td>
<td>It is reasonable to use similar indications for AF ablation in selected patients with HCM as in patients without HCM.</td>
<td>2A</td>
<td>B-NR</td>
<td>385, 1043, 1044</td>
</tr>
<tr>
<td>Young patients (<45 years of age)</td>
<td>It is reasonable to use similar indications for AF ablation in young patients with AF (<45 years of age) as in older patients.</td>
<td>2A</td>
<td>B-NR</td>
<td>405, 1045</td>
</tr>
<tr>
<td>Tachy-brady syndrome</td>
<td>It is reasonable to offer AF ablation as an alternative to pacemaker implantation in patients with tachy-brady syndrome.</td>
<td>2A</td>
<td>B-NR</td>
<td>381-383</td>
</tr>
<tr>
<td>Athletes with AF</td>
<td>It is reasonable to offer high-level athletes AF as first-line therapy due to the negative effects of medications on athletic performance.</td>
<td>2A</td>
<td>C-LD</td>
<td>370-372</td>
</tr>
<tr>
<td>Asymptomatic AF**</td>
<td>Paroxysmal: Catheter ablation may be considered in select patients.**</td>
<td>2B</td>
<td>C-EO</td>
<td>416, 418</td>
</tr>
<tr>
<td></td>
<td>Persistent: Catheter ablation may be considered in select patients.</td>
<td>2B</td>
<td>C-EO</td>
<td>417</td>
</tr>
</tbody>
</table>

--- Calkins et al. Heart Rhythm 2017;14:e275-444 ---

- AF ablation - integral part of AF management in patients with paroxysmal and persistent AF – good outcome in most.
- Pulmonary vein isolation and elimination of non PV triggers remain the cornerstone of the ablation procedure
 - What else to do to modify substrate in persistent Afib is still debated?
 - Reconnection of PVs remains major reason for recurrence.
 - Efforts to stabilize catheter and permanently isolate veins (JET, sheaths, force sensing) produce better outcomes
- AF Risk Factor Modification – Important even in ablation pts
- Moderate/severe MR with LA dilatation or LV dysfunction in AF may be functional/ reversed with successful AF ablation (Earlier consideration for ablation even with mild symptoms)
- AF ablation should be considered as primary therapy for patients with post conversion pauses - not pacemaker
- Late recurrence (>1yr) after ablation - more benign prognosis