Acute Coronary Syndromes
Controversies and Conundrums

Patrick T. O’Gara, MD
Watkins Family Distinguished Professor of Cardiology
Brigham and Women’s Hospital
Harvard Medical School
Disclosures

• NHLBI (CTSN), NIDCR
• Medtronic, Apollo TMVR Trial
• Edwards Life Sciences, Early TAVR Trial
Outline

• Pathogenesis
• General principles
• STEMI
• NSTEMI
• Population health
Acute Coronary Syndromes

Plaque erosion

- Lipid poor
- Proteoglycan and glycosaminoglycan rich
- Non-fibrillar collagen breakdown
- Few inflammatory cells
- Endothelial cell apoptosis
- Secondary neutrophil involvement
- Female predominance
- High triglycerides

Plaque rupture

- Lipid rich
- Collagen poor, thin fibrous cap
- Interstitial collagen breakdown
- Abundant inflammation
- Smooth muscle cell apoptosis
- Macrophage predominance
- Male predominance
- High LDL

From: Requiem for the ‘vulnerable plaque’
Acute Coronary Syndromes

From IK Jang, Mass Gen Hosp
Acute Coronary Syndromes

From: Requiem for the ‘vulnerable plaque’
Universal Definition of MI

Thygesen K et al. Euro Heart J 2018; 00:1-33
General Principles of Care

• Risk stratification (Intensity ~ Risk)
• Reperfusion (STEMI)
• Revascularization (NSTEMI, STEMI)
• Anti-thrombotic therapy
• Beta-blockers, ACE-I/ARBs, others
• Secondary prevention
Reperfusion Therapy for Patients with STEMI

*Patients with cardiogenic shock or severe heart failure initially seen at a non-PCI-capable hospital should be transferred for cardiac catheterization and revascularization as soon as possible, irrespective of time delay from MI onset (Class I, LOE: B). †Angiography and revascularization should not be performed within the first 2 to 3 hours after administration of fibrinolytic therapy.
Door-to-Balloon Times and 30-Day Unadjusted Mortality

Culprit Only or Multivessel PCI in STEMI

- Lesion in Non-infarct Related Artery (N-IRA)
- Occluded Infarct Related Artery (IRA)

Complete Revascularization:
Treat IRA and Treat N-IRA Stenoses

Lesion-Only Revascularization:
Treat IRA Only
Leave N-IRA Stenoses
STEMI with MVD

Multi-Vessel PCI

- At time of pPCI
- Planned, Staged
- Ischemia, + stress
PCI Strategies in STEMI

<table>
<thead>
<tr>
<th>Strategies</th>
<th>Culprit vessel-only primary PCI</th>
<th>Multivessel primary PCI</th>
<th>Staged PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial procedure</td>
<td>Culprit vessel-only PCI</td>
<td>Culprit vessel PCI and non-culprit vessel PCI</td>
<td>Culprit vessel-only PCI</td>
</tr>
<tr>
<td>Days–weeks later</td>
<td>Non-culprit vessel PCI for spontaneous ischemia or intermediate/high risk findings on noninvasive testing</td>
<td>Decreased repeat revascularization</td>
<td>Non-culprit vessel PCI</td>
</tr>
</tbody>
</table>

Pros
- Reduced contrast volume
 - Reduced risk of PCI complications
- Decreased hospital length of stay

Cons
- Increased repeat revascularization risk
- Potential reduction in LV recovery
- Prolonged procedure time
 - Increased contrast volume
 - Increased periprocedural MI risk
 - Potentially unnecessary PCI of functionally insignificant stenosis
- Time to assess benefit vs. risk of non-culprit vessel PCI
 - Additional PCI access risk
 - Additional procedure costs

<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIb</td>
<td>B-R</td>
<td>PCI of a noninfarct artery may be considered in selected patients with STEMI and multivessel disease who are hemodynamically stable, either at the time of primary PCI or as a planned staged procedure.¹</td>
</tr>
</tbody>
</table>

¹. Modified recommendation from 2013 Guideline (changed class from III: Harm to IIb and expanded time frame in which multivessel PCI could be performed).

Insufficient data to inform recommendation regarding optimal timing of staged PCI
In cardiogenic shock, routine revascularization of non-IRA lesions is not recommended at the time of primary PCI.

Thiele H et al. NEJM 2017; 377: 2419-32
IABP SHOCK II Trial

Thiele H et al AHA/Circulation 2018;139:00
Current Challenges

- Patient awareness, delay
- Access
- Health system obstacles
- Medication adherence
- Rehabilitation services
NSTEMI
0-1 Hour “Rule-Out”

A

Suspected NSTEMI (n = 3123)

- 0h*< 5ng/L or 0h < 12ng/L and Δ0-1h < 3ng/L
- Others
- 0h ≥ 52ng/L or Δ0-1h ≥ 5ng/L

Rule-out
Young (n=1122)
Proportion: 956 (85%)
Sens.: 100% (94.9-100)
NPV: 100% (99.6-100)

Middle-age (n=935)
Proportion: 606 (65%)
Sens.: 99.3% (96-99.9)
NPV: 99.8% (99.1-100)

Old (n=1066)
Proportion: 317 (30%)
Sens.: 99.3% (97.5-99.8)
NPV: 99.4% (97.7-99.8)

Observe
Young (n=1122)
Proportion: 74 (7%)
Prevalence of NSTEMI: 15%

Middle-age (n=935)
Proportion: 188 (20%)
Prevalence of NSTEMI: 14%

Old (n=1066)
Proportion: 477 (45%)
Prevalence of NSTEMI: 14%

Rule-in
Young (n=1122)
Proportion: 92 (8%)
Spec.: 97% (95.8-97.9)
PPV: 66.3% (56.2-75.1)

Middle-age (n=935)
Proportion: 141 (15%)
Spec.: 96.1% (94.5-97.2)
PPV: 78% (70.5-84.1)

Old (n=1066)
Proportion: 272 (25%)
Spec.: 92.7% (90.7-94.3)
PPV: 79% (73.8-83.5)

<table>
<thead>
<tr>
<th>TIMI Score</th>
<th>GRACE Score</th>
<th>EDACS Score</th>
<th>HEART Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE ≥ 65</td>
<td>AGE</td>
<td>AGE ≥ 25 ≤ 65</td>
<td>AGE ≥ 25 ≤ 65</td>
</tr>
<tr>
<td>1 = ST changes ≥ 0.5 mm</td>
<td>1 = ST changes ≥ 0.5 mm</td>
<td>2 = Male</td>
<td>2 = Typical, 1 = Atypical</td>
</tr>
<tr>
<td>Coronal Disease 1 = Known stenosis</td>
<td>Systolic BP mmHg</td>
<td>Coronary Disease or ≥ 3 Risk Factors</td>
<td>2 = ST depression, 1 = T-wave inversion</td>
</tr>
<tr>
<td>Aspirin Use 1 = Within 7 days</td>
<td>Creatinine μmol/L</td>
<td>Typical Symptoms</td>
<td>Risk Factors 2 = 2 or more, 1 = 1</td>
</tr>
<tr>
<td>TROPTIN 1 = 99th centile</td>
<td>TROPTIN 1 = 99th centile</td>
<td>Atypical Symptoms</td>
<td>TROPTIN 2 = 3 x upper limit, 1 = 1</td>
</tr>
<tr>
<td>Risk Factors 1 = 3 or more</td>
<td>Heart Rate BPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe Angina 1 = 2 in 24 hours</td>
<td>Cardiac Arrest Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Killip Class Category</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low Risk Criteria
- TIMI: 0 or 1
- GRACE: 108 or less
- EDACS: Less than 16
- HEART: 3 or less
Intensity and Timing of Therapy

Role of Risk Assessment

Invasive evaluation in Non-ST-Elevation Acute Coronary Syndromes

- **Very High-Risk**
 - Haemodynamic instability or cardiogenic shock
 - Recurrent/ongoing chest pain refractory to medical tx
 - Life-threatening arrhythmias or cardiac arrest
 - Mechanical complications of MI
 - Acute heart failure
 - Recurrent dynamic ST-T wave changes

- **High-Risk**
 - Established diagnosis of non-ST-elevation myocardial infarction based on cardiac troponins
 - Dynamic ST/T-changes (symptomatic or silent)
 - GRACE score >140

- **Intermediate Risk**
 - Diabetes mellitus or renal insufficiency
 - LVEF <40% or congestive heart failure
 - Early post-infarction angina or prior PCI/CABG
 - GRACE risk score >109 and <140 or recurrent symptoms/ischaemia on non-invasive testing.

- **Immediate Invasive** (<2 hours)
 - IC

- **Early Invasive** (<24 hours)
 - IA

- **Invasive** (<72 hours)
 - IA

2018 ESC Revascularization Guidelines Euro Heart J 2018; 00:1-96
MVD in NSTEMI: SMILE Trial

Multi-Vessel PCI in NSTEMI

CENTRAL ILLUSTRATION Complete Versus Culprit-Only Lesion Intervention in Patients With Acute Coronary Syndrome and Multivessel Disease: Survival Curves

Cumulative Incidence of All-Cause Mortality (%)

Years Since Procedure

Likelihood Ratio Test \(p = 0.0001 \)

Numbers at Risk

<table>
<thead>
<tr>
<th></th>
<th>Complete Revascularization</th>
<th>Culprit Vessel Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9,990</td>
<td>9,990</td>
</tr>
<tr>
<td>1</td>
<td>9,848</td>
<td>9,953</td>
</tr>
<tr>
<td>2</td>
<td>7,890</td>
<td>8,252</td>
</tr>
<tr>
<td>3</td>
<td>5,231</td>
<td>6,584</td>
</tr>
<tr>
<td>4</td>
<td>3,687</td>
<td>4,316</td>
</tr>
<tr>
<td>5</td>
<td>1,941</td>
<td>2,019</td>
</tr>
</tbody>
</table>

Extended Duration DAPT

Triple Therapy

Ischemia

Bleeding
Treatment Algorithm for Duration of P2Y\textsubscript{12} Inhibitor Therapy in Patient With Recent ACS (NSTE-ACS or STEMI)

1. **Recent ACS (NSTE-ACS or STEMI)**
 - CABG
 - **Class I:** After CABG, resume P2Y\textsubscript{12} inhibitor to complete 1 y of DAPT (clopidogrel, prasugrel, ticagrelor)
 - Medical Therapy
 - **Class I:** At least 12 mo (clopidogrel, ticagrelor)
 - Lytic (STEMI)
 - **Class I:** At least 14 d and up to 12 mo (clopidogrel)
 - PCI (BMS or DES)
 - **Class I:** At least 12 mo (clopidogrel, prasugrel, ticagrelor)
 - **High bleeding risk* or significant overt bleeding**
 - **Class IIb:** Discontinuation after 6 mo may be reasonable
 - **No high risk of bleeding and no significant overt bleeding on DAPT**
 - **Class IIIb:** >12 mo may be reasonable
Case

75 year old woman with NSTEMI

- RCA PCI 2015: 9 months DAPT
- PAF 2016: Apixaban monotherapy
- ICH 2016 (off A/C): Cerebellar AVM
- Gamma knife surgery 2017
- No antithrombotics x 16 months
- Presently in sinus rhythm
Case

75 year old widow with NSTEMI

• How to proceed?
 • ASA?
 • P2Y$_{12}$?
 • Cangrelor?
 • Heparin?
 • Bivalirudin?
 • PCI or CABG?
 • Post-procedure management
Patients with an indication for oral anticoagulation undergoing PCI

Concerns about ischaemic risk prevailing

Concerns about bleeding risk prevailing

Time from treatment initiation

- **1 mo.**
- **3 mo.**
- **6 mo.**
- **12 mo.**
- **Beyond 12 mo.**

- **ACO** 1 mo. Triple Therapy
 - Class IIa B

- **ACO** 1 mo. Triple Therapy
 - Class IIa B

- **CO** OR **AO**
 - Dual Therapy up to 12 mo.
 - Class IIa A

- **CO**
 - Dual Therapy up to 12 mo.
 - Class IIa A

OAC alone
- Class IIa B

A = Aspirin
C = Clopidogrel
O = Oral anticoagulation
PIONEER AF-PCI: Rivaroxaban

Group 1: R 15 mg daily + P2Y12
Group 2: R 2.5 mg bid + DAPT
Group 3: VKA + DAPT

Hazard ratio for group 1 vs. group 3, 0.59 (95% CI, 0.47–0.76) P<0.001
Hazard ratio for group 2 vs. group 3, 0.63 (95% CI, 0.50–0.80) P<0.001

Gibson CM et al. NEJM 2017
Mortality Following NSTEMI

Berg DD et al. Euro Heart J 2018; 39:3810-20
Szummer K et al. Euro Heart J 2018;39:3766-76
The Cycle of Improvement

Antman EM Euro Heart J 2018; 39:3777-9