Cancer Therapy Monitoring and Treatment Planning:

What Should We Be Doing to Minimize Cardiotoxic Risk?

Saro Armenian DO, MPH
Associate Professor & Division Director,
City of Hope Comprehensive Cancer Center
What are the Priorities in the Cardiovascular Care of Oncology Patients?

Prior to Cancer Therapy
Identify high CV risk patients; Mitigate CTX risk; Inform cancer treatment

During Cancer Therapy
Monitoring to identify CTX; Avoid dose interruptions; Prevent CV events

After Cancer Therapy
Survivorship; Decrease risk of late CV events; Improve long-term health

Need to improve upon CV screening methods and develop strategies to identify high risk patients
Why is Risk Stratification Important?

- Cardiovascular toxicity leads to dose interruptions and discontinuation of necessary cancer therapy
- Combination therapies are associated with increased cardiotoxicity; many newer agents in development
- Early identification of cardiotoxicity and institution of medications may increase likelihood of recovery
- A growing population of survivors are at an increased risk of long-term cardiovascular morbidity and mortality
Since the 1990s:
Mortality Down, Survivorship Up

In the United States...

Multiple Myeloma

5y: 22% vs. 16%, p<0.01
IRR*: 1.7 (1.3-2.2)

NHL

5y: 18% vs. 13%, p<0.01
IRR*: 1.4 (1.1-1.8)

Breast

5y: 12% vs. 10%, p<0.01
IRR*: 1.2 (1.2-1.3)

Kidney

5y: 17% vs. 12%, p<0.01
IRR*: 1.2 (1.1-1.5)

*Adjusted for: Age, sex, race/ethnicity, CVRFs

Risk of all cause mortality: *IRR=1.65, p<0.01
*Adjusted for: Age, sex, race/ethnicity, CVRFs, cancer stage

Early Institution of Cardiac Medications Increases Likelihood of LVEF Recovery

Cardiac event-free rate according to “response”

Responders according to time between cardiac diagnosis and HF meds

Partial recovery defined as LVEF increase >10% but <50%; Full recovery LVEF >50%

What are the Priorities in the Cardiovascular Care of Oncology Patients?

Prior to Cancer Therapy
- Identify high CV risk patients; Mitigate CTX risk; Inform cancer treatment

During Cancer Therapy
- Monitoring to identify CTX; Avoid dose interruptions; Prevent CV events

After Cancer Therapy
- Survivorship; Decrease risk of late CV events; Improve long-term health

Need to improve upon CV screening methods and develop strategies to identify high risk patients
Primary screening and prevention

- **Cancer diagnosis**
- **Start of treatment**
- **End of treatment**

Recommendation 2.1
Avoid or minimize the use of potentially cardiotoxic therapies if established alternatives exist that would not compromise cancer-specific outcomes.
(Consensus-based; Benefits outweigh harms; Strength of Recommendation: Strong).

Recommendation 2.2
Comprehensive assessment in cancer patients that includes an H&P, screening for cardiovascular disease risk factors (hypertension, diabetes, dyslipidemia, obesity, smoking), and an echocardiogram prior to initiation of potentially cardiotoxic therapies.
(Evidence and consensus-based; Benefits outweigh harms; Evidence quality: High; Strength of Recommendation: Strong)
At Increased Risk for Cardiac Dysfunction

• High dose anthracycline (e.g. ≥250 mg/m2 doxorubicin, ≥600 mg/m2 epirubicin)
• High dose (≥30 Gy) radiotherapy where the heart is in the treatment field
• Lower dose anthracycline (e.g. <250 mg/m2 doxorubicin) in combination with lower dose radiotherapy (<30 Gy) where the heart is in the treatment field
• Treatment with lower dose anthracycline (e.g. <250 mg/m2 doxorubicin) or trastuzumab alone, and presence of any of the following risk factors:
 – Multiple (≥2) CV risk factors: smoking, hypertension, diabetes, dyslipidemia, obesity
 – Older (≥60 years) age at cancer treatment
 – Compromised cardiac function (e.g. borderline low LVEF [50-55%), history of myocardial infarction, ≥moderate valvular heart disease)
• Treatment with lower dose anthracycline (e.g. <250 mg/m2 doxorubicin) followed by trastuzumab (sequential therapy)

J Clin Oncol. 2017 Mar 10;35(8):893-911
45% of cases with CHF exposed to <250 mg/m²

J Clin Oncol, 2008, 26: 5537-43
Risk Profile: Therapy-Related HF

For a given exposure, there is marked variation in prevalence and severity of heart failure that is not explained exclusively by clinical risk factors.

Clinical risk factors
- Age at exposure
- Female gender
- Anthracycline dose
- Comorbidities

Genetic risk factors
- Drug metabolism and Transport
- Generation of reactive oxygen species
- Anti-oxidant defense
- DNA repair pathways
- Renin-angiotensin system

Therapy-Related Heart Failure
Anthracycline

Prescribed dose

Internal dose

Dox-quinone

NQO1

ROS

Dox-semiquinone*

NAD(P)H oxidase multi-enzyme complex

Dox-ol

Aconitase/IRP1

Loss of Fe

Homeostasis

SOD2, APOE

ABCC1, ABCC2

CBR1, CBR3

HFE

NAD(P)+

NAD(P)H

Energy/Redox

Impairment

Myocyte apoptosis

Maladaptive LV Remodeling

Asymptomatic ↓LVEF/FS

Heart Failure

2013 Oct;163(2):205-13

<table>
<thead>
<tr>
<th>Trait</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>2.9</td>
<td>1.4-6.0</td>
</tr>
<tr>
<td>Chest XRT</td>
<td>4.7</td>
<td>1.0-16.5</td>
</tr>
<tr>
<td>HFE (rs1799945), GC/GG</td>
<td>2.5</td>
<td>1.0-6.3</td>
</tr>
<tr>
<td>RAC2 (rs13058338), TA/AA</td>
<td>2.8</td>
<td>1.4-5.6</td>
</tr>
<tr>
<td>ABCC2 (rs818710), GA/AA</td>
<td>4.3</td>
<td>1.5-12.5</td>
</tr>
</tbody>
</table>
Receiver operating characteristic (ROC) curves

<table>
<thead>
<tr>
<th>Group</th>
<th>AUC</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNPs and Clinical</td>
<td>0.79</td>
<td>0.75-0.83</td>
</tr>
<tr>
<td>SNPs only</td>
<td>0.67</td>
<td>0.60-0.74</td>
</tr>
<tr>
<td>Clinical only</td>
<td>0.69</td>
<td>0.63-0.75</td>
</tr>
</tbody>
</table>

Br J Haemtol. 2013; 163:205
Among non-Hispanic whites

Evidence of gene environment (anthracycline) interaction

SNP rs1786814 (p value=1.14e-5) on gene CELF4

rs1786814*anthracycline, p=1.14x10^{-05}
Genome-wide Association Study

Germline genomics and risk prediction
What are the Priorities in the Cardiovascular Care of Oncology Patients?

Prior to Cancer Therapy
Identify high CV risk patients; Mitigate CTX risk; Inform cancer treatment

During Cancer Therapy
Monitoring to identify CTX; Avoid dose interruptions; Prevent CV events

After Cancer Therapy
Survivorship; Decrease risk of late CV events; Improve long-term health

Need to improve upon CV screening methods and develop strategies to identify high risk patients
Biomarkers in Cardio-Oncology

• Existent CV biomarkers

• Multiple biomarkers
 – Determining the utility of a multi-marker approach

• New biomarker discovery
 – Discovering and validating newer mechanistic biomarkers
TnI as a Marker of Cardiac Dysfunction with High Dose Chemotherapy

- Frequent measures of TnI with each chemotherapy
 - 703 patients with TnI measured early (0, after, 12, 24, 36, 72 hrs) and late (1mo)
 - Patients divided into 3 groups based upon positivity/timing (highest TnI)

<table>
<thead>
<tr>
<th></th>
<th>TnI -/- (n=495)</th>
<th>TnI +/- (n=145)</th>
<th>TnI +/+ (n=63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td>5 (1%)</td>
<td>53 (37%)</td>
<td>53 (84%)</td>
</tr>
</tbody>
</table>

PPV 84% and NPV 99%

TnI as a Marker to Guide Therapy

- TnI measured at 6 timepoints with each chemotherapy cycle
- 114 of 473 (24%) patients showed TnI > 0.07 ng/ml
- After completion of chemotherapy, 56 TnI+ patients randomly assigned to ACE-I; 58 TnI+ to no treatment (control)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>LVEF at 3 months (%)</th>
<th>LVEF at 6 months (%)</th>
<th>LVEF at 12 months (%)</th>
<th>Cardiac events (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n=58)</td>
<td>61.8 ± 4.3</td>
<td>54.2 ± 8.1</td>
<td>51.9 ± 7.9</td>
<td>48.3 ± 9.3</td>
<td>31</td>
</tr>
<tr>
<td>ACE-I (n=56)</td>
<td>61.1 ± 3.2</td>
<td>61.9 ± 3.3</td>
<td>61.6 ± 3.9</td>
<td>62.4 ± 3.5</td>
<td>1</td>
</tr>
</tbody>
</table>

Role of Tn and NT-proBNP with Trastuzumab

- 452 patients from HERA study were evaluable

- Elevations in cardiac Tn (standard and hs platforms) observed
 - Primarily post anthracyclines (~13%, ~24%); smaller number with first elevations during trastuzumab (~1%, 6%)

- High variability in NT-proBNP observed

- Post-anthracycline Tn and NT-proBNP associated with first significant LVEF decline
 - Effect sizes for Tn (HR 2-4) >> NT-proBNP (HR 1.03)
 - Poor discriminative ability

Role of TnT and NT-proBNP in Pediatrics

- Children with high risk ALL treated with doxorubicin alone (n=75) or with dexrazoxane (n=81)
- Greater percentage of elevations in TnT and NT-proBNP in doxorubicin alone
- 3-month changes in TnT associated with 4-year changes in LV mass and posterior wall thickness; NT-proBNP associated with LV thickness/dimension

Biomarkers in Cardio-Oncology

- Existent CV biomarkers
- Multiple biomarkers
 - Determining the utility of a multi-marker approach
- New biomarker discovery
 - Discovering and validating newer mechanistic biomarkers
Biomarkers Hypothesized to be Relevant to Doxorubicin & Trastuzumab Cardiotoxicity

- Oxidative Stress
- MPO
- Inflammation
- hsCRP
- Myocyte Injury
- High-sensitivity TnI
- Neuro-hormones
- NT-proBNP
- Fibrosis
- Galectin-3
- Inflammation/Oxid. Stress
- GDF-15
- Vascular Remodeling
- sFlt-1/PIGF

hsTnI and MPO Associated with First Cardiotoxic Event; Additive in Combination

- Biomarkers assessed at baseline and every 3 months during doxorubicin and trastuzumab
 - Patients followed for 15 months

- Baseline values not associated with cardiotoxicity

- 3 month (post-Dox) change in Troponin and myeloperoxidase significant (HR 1.34-1.38)

Ky, et al. JACC. 2014.
Cardiac Strain
Emerging Prognostic Index of Cardiotoxicity

Figure 3 Incremental predictive value of $\Delta e'$, $\Delta s'$, ΔGLS, ΔGLSR-S, and ΔGLSR-E by nested logistic regression models
Biomarkers in Cardio-Oncology

• Existent CV biomarkers

• Multiple biomarkers
 – Determining the utility of a multi-marker approach

• New biomarker discovery
 – Discovering and validating newer mechanistic biomarkers
Metabolomics as a discovery platform

LV End-Systolic Wall Stress (ESWS)

Genome
- DNA

Transcriptome
- RNA

Proteome
- Proteins

Metabolome
- Sugars, Nucleotides, AA Lipids

Metabolomic profiling
- GC-MS based platform (Metabolon; Durham, NC)
- 359 plasma metabolites; 64 pathways

Heart Failure

Phenotype
Fatty Acid (FA) Oxidation

Long-chain fatty acids major substrate for energy production in myocardium

Transport of LCFA rate limiting step in FA oxidation

Cancer Epidemiol Biomarkers Prev
2014 Jun;23(6):1109-14
Metabolomics as a discovery platform

- HR 0.78, p<0.05
- HR 3.33 p<0.05
- HR 2.70, p<0.05
- Asymmetric dimethylarginine
- N-monomethylarginine
Take Home: What is the role of biomarkers for screening *during* cancer treatment?

- Role of biomarkers as primary, solitary measures inconclusive
- **Guidelines support role as ancillary measures**
 - ESMO, ESC, COG, IGHG, ASCO
- **Change in biomarker over time may be more important than baseline levels alone**
 - In adults undergoing contemporary treatment regimen, post-doxorubicin time-point critical
 - In children undergoing ALL therapy, greatest changes observed during doxorubicin, possibly associated with late changes
What are the Priorities in the Cardiovascular Care of Oncology Patients?

Prior to Cancer Therapy
Identify high CV risk patients; Mitigate CTX risk; Inform cancer treatment

During Cancer Therapy
Monitoring to identify CTX; Avoid dose interruptions; Prevent CV events

After Cancer Therapy
Survivorship; Decrease risk of late CV events; Improve long-term health

Need to improve upon CV screening methods and develop strategies to identify high risk patients
Table 3. CHF Risk Scores and Corresponding Model Discrimination and Predictive Power

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Simple Model†</th>
<th>Standard Model</th>
<th>Heart Dose Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Female</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Age at diagnosis, years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 5</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5-9</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10-14</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>≥ 15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anthracycline, mg/m²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Any</td>
<td>3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>< 100</td>
<td>—</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>100-249</td>
<td>—</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>≥ 250</td>
<td>—</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Chest or heart RT, Gy‡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Any</td>
<td>3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>< 5</td>
<td>—</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5-14</td>
<td>—</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>15-34</td>
<td>—</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>≥ 35</td>
<td>—</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Cohort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCSS (n = 285)$§</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC</td>
<td>0.71</td>
<td>0.74</td>
<td>0.76</td>
</tr>
<tr>
<td>C-statistic</td>
<td>0.72</td>
<td>0.76</td>
<td>0.77</td>
</tr>
</tbody>
</table>
COG ALTE1621:

HF Risk Reduction in childhood cancer survivors

Phase IIb randomized placebo-controlled clinical trial

Randomize

- Childhood CA survivors treated with high dose anthracycline (≥250 mg/m²)
 - N= 250

2wk run-in

- 3.125mg/day

If tolerating, **escalate**

- Carvedilol 12.5mg/day total 2 yrs
 - N=125

Placebo x 2 years

- N=125

NIH/NCI: R01CA196854 (Armenian)
CVD prevention studies in at risk survivors of childhood and young adult cancers

<table>
<thead>
<tr>
<th>Study objective</th>
<th>Population</th>
<th>Design</th>
<th>Outcome(s)</th>
<th>Status</th>
<th>Funding (PI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine if a web-based diet and activity intervention can achieve meaningful weight loss</td>
<td>Adult aged, obese survivors of acute lymphoblastic leukemia</td>
<td>Randomized controlled trial</td>
<td>Weight loss after 24 months</td>
<td>In follow-up</td>
<td>R01 CA18739704 (Tonorezos)</td>
</tr>
<tr>
<td>Determine if a web-based physical activity intervention can improve fitness</td>
<td>Childhood ALL patients within 3 months of completing therapy</td>
<td>Randomized controlled trial</td>
<td>Difference in the physiologic cost index 24 weeks after intervention</td>
<td>Enrolling participants</td>
<td>R01 CA193478 (Ness)</td>
</tr>
<tr>
<td>Determine if a survivorship care plan counseling intervention can improve control of cardiovascular risk conditions</td>
<td>Adult-aged survivors at high risk of premature cardiovascular disease</td>
<td>Randomized controlled trial</td>
<td>BP, cholesterol, sugar, and lipid measurements after 12 months</td>
<td>Enrolling participants</td>
<td>R01 CA193478 (Chow)</td>
</tr>
<tr>
<td>Determine if mobile intervention with tailored feedback can improve physical activity levels</td>
<td>Young adult (18-39 y) cancer survivors</td>
<td>Randomized controlled trial</td>
<td>Objectively-measured PA (ActiGraph accelerometers)</td>
<td>Enrolling participants</td>
<td>R01 CA204965 (Valle)</td>
</tr>
</tbody>
</table>
Take Home: What is needed for appropriate CVD risk stratification and risk reduction in cancer *survivors*?

- Large longitudinal studies in survivors of adult-onset cancers (e.g., breast, CRC, renal)
 - Characterize markers (blood, imaging) of chronic CV injury
 - Appropriate risk prediction models
 - Epidemiology of disease, cancer treatment exposures
- Prevention efforts that extend beyond primary, to secondary
- Cost-effectiveness studies
- Dissemination into clinical care guidelines and practice