A Risky Game of Jeopardy:

Optimizing Statin Therapy is the Correct Answer

Salim S. Virani, MD, PhD, FACC, FAHA

Staff Cardiologist, Michael E.DeBakey VA Medical Center
Associate Professor, Section of Cardiovascular Research
Baylor College of Medicine
Houston, TX
Disclosures

• Research support: Department of Veterans Affairs Health Services Research & Development, American Diabetes Association, American Heart Association, Baylor College of Medicine Global Initiatives.

• Member, Steering Committee, Patient and Provider Assessment of Lipid Management (PALM) Registry at the Duke Clinical Research Institute (DCRI) [No financial remuneration].

• Honorarium: ACC (Associate Editor for Innovation, ACC.org)
Objectives

• Discuss recent RCT data on the efficacy of non-statin therapies among ASCVD patients.
• Maximizing available statin therapy (and adherence) as the first step.
• Remaining issues (inter-individual variability in treatment response, cost, how to identify best candidates).
Recent RCT Data on Non-Statin Use in ASCVD Patients
IMPROVE-IT: ASCVD risk reduction post-ACS
Ezetimibe + simvastatin vs. simvastatin monotherapy

- Addition of ezetimibe to simvastatin 40 mg resulted in additional 16.9 mg/dL reduction in LDL-C and 7% RRR/2% ARR in ASCVD events. No significant adverse events noted,
Trial Design

27,564 high-risk, stable patients with established CV disease (prior MI, prior stroke, or symptomatic PAD)

Screening, Lipid Stabilization, and Placebo Run-in
High or moderate intensity statin therapy (± ezetimibe)

LDL-C ≥70 mg/dL or non-HDL-C ≥100 mg/dL

RANDOMIZED DOUBLE BLIND

Evolocumab SC
140 mg Q2W or 420 mg QM

Placebo SC
Q2W or QM

Follow-up Q 12 weeks
Primary Endpoint

Hazard ratio 0.85
(95% CI, 0.79-0.92)
P < 0.0001

CV Death, MI, Stroke, Hosp for UA, or Cor Revasc

Months from Randomization

0% 2% 4% 6% 8% 10% 12% 14% 16%

0 6 12 18 24 30 36

Placebo

Evolocumab

14.6%
12.6%
CV Death, MI, or Stroke

<table>
<thead>
<tr>
<th>LDL-C (mM)</th>
<th>Adj HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.5</td>
<td>0.69 (0.56-0.85)</td>
</tr>
<tr>
<td>0.5-1.3</td>
<td>0.75 (0.64-0.86)</td>
</tr>
<tr>
<td>1.3-1.8</td>
<td>0.87 (0.73-1.04)</td>
</tr>
<tr>
<td>1.8-2.6</td>
<td>0.90 (0.78-1.04)</td>
</tr>
<tr>
<td>≥ 2.6</td>
<td>referent</td>
</tr>
</tbody>
</table>

P = 0.0001
Safety Events - 2

% pts

Adj P-values for trend >0.10 for each comparison

LDL-C (mM) at 4wks

- <0.5
- 0.5-1.3
- 1.3-1.8
- 1.8-2.6
- ≥2.6

Neurocog | AST/ALT↑ | CK↑ | Non-CV death | Hem stroke

Giugliano RP, ESC Congress 2017, Barcelona 8/28/2017
Components of the primary outcome

<table>
<thead>
<tr>
<th>Type of Event</th>
<th>Anacetrapib (N=15225)</th>
<th>Placebo (N=15224)</th>
<th>Rate Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of participants with events (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronary death</td>
<td>388 (2.5)</td>
<td>420 (2.8)</td>
<td>0.92 (0.80–1.06)</td>
<td>0.25</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>669 (4.4)</td>
<td>769 (5.1)</td>
<td>0.87 (0.78–0.96)</td>
<td>0.007</td>
</tr>
<tr>
<td>Coronary death or MI</td>
<td>934 (6.1)</td>
<td>1048 (6.9)</td>
<td>0.89 (0.81–0.97)</td>
<td>0.008</td>
</tr>
<tr>
<td>Coronary revascularization</td>
<td>1081 (7.1)</td>
<td>1201 (7.9)</td>
<td>0.90 (0.83–0.97)</td>
<td>0.01</td>
</tr>
<tr>
<td>Major coronary event</td>
<td>1640 (10.8)</td>
<td>1803 (11.8)</td>
<td>0.91 (0.85–0.97)</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Major coronary event: Coronary death, MI or coronary revascularization

No significant evidence of differential proportional effects among 23 pre-specified subgroup categories

CANTOS: Primary Cardiovascular Endpoint (MACE)

Placebo SC q 3 months
Canakinumab 150/300 SC q 3 months

HR 0.85
95% CI 0.76-0.96
P = 0.007

39% reduction in hsCRP
No change in LDL-C
15% reduction in MACE

The 150mg group met multiplicity adjusted thresholds for formal statistical significance for both the primary and secondary cardiovascular endpoints.
Residual Inflammatory Risk: Addressing the Obverse Side of the Atherosclerosis Prevention Coin
Ridker PM. Eur Heart J 2016;37:1720-22

Known Cardiovascular Disease
LDL 150 mg/dL (3.8 mmol/L)
hsCRP 4.5 mg/L
High Intensity Statin

“Residual Cholesterol Risk”
LDL 110 mg/dL (2.8 mmol/L)
hsCRP 1.8 mg/L
Additional LDL Reduction

“Residual Inflammatory Risk”
LDL 70 mg/dL (1.8 mmol/L)
hsCRP 3.8 mg/L
Additional Inflammation Reduction

IMPROVE-IT: Ezetimibe 6% RRR
FOURIER/SPIRE: PCSK9 Inhibition q2 weeks 15% RRR
No Prior Proof of Concept
Maximizing Statin Intensity and Adherence as the First Step
Excluded 7,284 not meeting 1 major or 2 minor risk factors

Excluded 241,213 with LDL-C <70mg/dL and non-HDL-C <100 mg/dL

Excluded 228,535 for other reasons (not on moderate-intensity statin, TGs >400, ESRD, acute liver disease, FH)

631,855 patients with clinically evident ASCVD

624,571 ASCVD patients

383,358 ASCVD patients

154,823 ASCVD patients

73,626 (47.5%) on moderate-intensity statin therapy
77,180 (49.9%) on high-intensity statin therapy
1340 (0.9%) on moderate-intensity statin therapy + ezetimibe
2677 (1.7%) on high-intensity statin therapy + ezetimibe

41% with statin non-adherence

Estimates based on cost of $2.00 per day for 10 mg tablet of ezetimibe.

- **A**: Annual cost of starting all FOURIER-eligible patients on evolocumab.
- **B**: Cost of titrating every patient on moderate intensity statin to high-intensity statin and initiating every patient on ezetimibe who was not on ezetimibe.
- **C**: Annual cost of initiating evolocumab in patients with LDL-C levels >70 mg/dL after B.
- **D**: Total cost of titrating statin and ezetimibe plus initiating evolocumab in patients with LDL-C levels >70 mg/dL.

Total net annual savings associated with evolocumab therapy in all patients (A) minus the annual cost associated with titrating every patient to high-intensity statin therapy (if not on one) and the cost associated with initiation of ezetimibe (if patient is not on it) (B+C) plus the annual cost of evolocumab among those with LDL-C >70 mg/dL (D).
Remaining Issues
Variation in Response to Statin Therapy

- JUPITER trial participants receiving rosuvastatin 20 mg
 - Marked inter-individual variability in response to therapy
 - 10.8% no reduction in LDL-C, 43% >0 to <50%, 46% >50%
 - Reduction in ASCVD events greatest in those with greatest % reduction in LDL-C

Variability in response to Bococizumab

The SPIRE 1 and SPIRE 2 Cardiovascular Outcomes Trials: Confirmation of Wide Individual Variability in Percent LDLC Reduction

14 weeks

52 weeks

Cost Associated with PCSK9i

Annual increase in health care expenditure = $120 billion

*Total US health care expenditure on drugs in 2015: $329 billion

*Total US health care spending in 2015: $2.8 trillion
How to Maximize Net ASCVD Benefit of Non-Statin Therapies?
ARR 2.2%, NNT 45

ARR 6.3%, NNT 16

Conclusions

- Multiple novel non-statin therapies have shown efficacy in improving CV outcomes in patients with clinical ASCVD.
- Variation in response to therapy and cost remain important issues.
- Evidence-based statin therapy use and improvement in statin adherence may decrease the need for some of these therapies.
- There remains a need to identify which subgroups of ASCVD patients derive the most benefit from non-statin therapies based on net ASCVD benefit and cost-effectiveness.