Noncardiac Comorbidities in Heart Failure With Reduced Versus Preserved Ejection Fraction

Robert J. Mentz, MD,* Jacob P. Kelly, MD,* Thomas G. von Lueder, MD, PhD; Adriaan A. Voors, MD,† Carolyn S.P. Lam, MBBS,* Martin R. Cowie, MD, MSC,‡ Keld Kjeldsen, MD, DSC; Ewa A. Jankowska, MD, PhD; Dan Atar, MD, PhD; Javed Butler, MD, MPH,** Mona Fiuzat, PharmD,* Faiez Zannad, MD;†† Bertram Pitt, MD;‡‡ Christopher M. O’Connor, MD*

ABSTRACT

Heart failure patients are classified by ejection fraction (EF) into distinct groups: heart failure with preserved ejection fraction (HFpEF) or heart failure with reduced ejection fraction (HFrEF). Although patients with heart failure commonly have multiple comorbidities that complicate management and may adversely affect outcomes, their role in the HFpEF and HFrEF groups is not well-characterized. This review summarizes the role of noncardiac comorbidities in patients with HFpEF versus HFrEF, emphasizing prevalence, underlying pathophysiologic mechanisms, and outcomes. Pulmonary disease, diabetes mellitus, anemia, and obesity tend to be more prevalent in HFpEF patients, but renal disease and sleep-disordered breathing burdens are similar. These comorbidities similarly increase morbidity and mortality risk in HFpEF and HFrEF patients. Common pathophysiologic mechanisms include systemic and endomyocardial inflammation with fibrosis.

We also discuss implications for clinical care and future HF clinical trial design. The basis for this review was discussions between scientists, clinical trialists, and regulatory representatives at the 10th Global CardioVascular Clinical Trialists Forum. (J Am Coll Cardiol 2014;64:2281–93) © 2014 by the American College of Cardiology Foundation.
Patients with heart failure (HF) often have multiple concomitant diseases that complicate management and may adversely affect outcomes (1,2). Recent data from the Centers for Medicare & Medicaid Services demonstrate that 55% of Medicare patients coded as having HF have ≥5 chronic comorbidities (3). Data from the European Society of Cardiology Heart Failure Pilot Survey indicate that the majority of patients with chronic HF (74%) had at least 1 comorbidity, the most common of which are renal disease, anemia, and diabetes mellitus (DM) (4). In general, more than one-quarter of HF patients have comorbid pulmonary or renal dysfunction, both of which are associated with increased morbidity and mortality in the overall HF population (5-8). Patients are commonly classified according to ejection fraction (EF) into heart failure with preserved ejection fraction (HFpEF) (EF ≥50%) or heart failure with reduced ejection fraction (HFrEF) (EF <50%). The role of comorbidities has not been well characterized in these HF types. The present review summarizes the role of noncardiac comorbidities in patients with HFpEF versus HFrEF, with particular emphasis on prevalence, underlying pathophysiological mechanisms, and association with outcomes. We focused on chronic obstructive pulmonary disease (COPD), anemia, DM, renal disease, sleep-disordered breathing (SDB), and obesity. We briefly discuss other noncardiac comorbidities, including frailty and arthritis, and highlight the need for future research on these topics, as well as on depression, myopathy, and liver disease. The implications of these data for clinical care and for the design of future HF clinical trials are also discussed. Cardiac comorbidities (including hypertension, coronary artery disease, and atrial fibrillation) were recently discussed elsewhere (9) and are beyond the scope of the present review. This review is on the basis of discussions between scientists, clinical trialists, and regulatory and industry representatives at the 10th Global CardioVascular Clinical Trialists Forum held in Paris, France, on December 6, 2013.

METHODS

To identify additional relevant published data not discussed at the 10th Global CardioVascular Clinical Trialists, we searched MEDLINE (via PubMed) from January 1994 to July 2014 (the Online Appendix presents the full search strategy). We used Medical Subject Headings and key words, focusing on the most relevant terms for this topic. We manually searched reference lists of pertinent reviews, including studies and background data to find any relevant citations that our searches might have missed. We imported all citations into an EndNote X7 database. One reviewer (J.P.K.) screened and evaluated the retrieved records to select relevant studies. To focus on studies with representative patient samples, our search strategy required that publications included >500 patients and reported data from multiple sites. Given that entry criteria for clinical trials tend to exclude those with significant comorbidities, we focused on data from large HF registries and cohort studies. We required that the primary papers or supplemental materials include data on noncardiac comorbidities of interest.

In general, the prevalence of comorbidities was high across all studies, as demonstrated in the 3 largest U.S. HF registries (2,10,11), as well as ambulatory HF populations in the United States (12,13), as discussed later in this review. Other world regions demonstrated findings similar to those seen in the United States (14-16). Table 1 presents comorbidity prevalence data from several representative HF registries and epidemiological cohorts.

RESULTS

HFpEF VERSUS HFrEF: DEMOGRAPHIC DIFFERENCES. Overall, the data suggest that patients hospitalized with HFpEF tend to be 4 to 8 years older than those with HFrEF and are more often female (Table 1). These observations are supported by an analysis from the Framingham Heart Study, which demonstrated that female sex was independently associated with a >2-fold increased risk for HFpEF versus HFrEF (17). Increasing age predicts both HFpEF and HFrEF, but the risk is significantly greater for HFpEF (18). The sex differences in HF phenotype seem largely due to increased HFrEF in men related to previous myocardial infarction (18). Another explanation for these findings relates to a differential response to hypertension in men versus women. Men tend to develop eccentric left ventricular (LV) hypertrophy in response to hypertension, whereas women tend to develop concentric LV hypertrophy (19). Studies also found that African-American subjects have HFpEF less often than they have HFrEF (2,10,11). These findings are counterintuitive due to the high prevalence of hypertension and LV hypertrophy in this population. The specific reasons for these observations are unknown and require further investigation, but they may be related, in part, to ascertainment of the HFpEF diagnosis. It is unclear whether these findings are due
Comorbidities in HFpEF and HFrEF

Table 1: Demographic Characteristics and Prevalence of Noncardiovascular Comorbidities in Patients With Acute HF

<table>
<thead>
<tr>
<th>ADHERE Registry</th>
<th>OPTIMIZE-HF Registry</th>
<th>GWTG Registry</th>
<th>Ather et al.</th>
<th>Olmsted County 1987-2001</th>
<th>Olmsted County 2003-2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced EF (n = 25,865)</td>
<td>Preserved EF (n = 26,322)</td>
<td>LVSD (n = 20,118)</td>
<td>Preserved EF (n = 21,149)</td>
<td>EF <40% (n = 55,083)</td>
<td>EF ≥50% (n = 40,354)</td>
</tr>
<tr>
<td>Age, yrs</td>
<td>70 ± 14</td>
</tr>
<tr>
<td>Female</td>
<td>40%</td>
<td>62%</td>
<td>38%</td>
<td>62%</td>
<td>36%</td>
</tr>
<tr>
<td>African-American race</td>
<td>22%</td>
<td>17%</td>
<td>21%</td>
<td>15%</td>
<td>25%</td>
</tr>
<tr>
<td>Medical history</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPD or asthma</td>
<td>27%</td>
<td>31%</td>
<td>-</td>
<td>-</td>
<td>27%</td>
</tr>
<tr>
<td>Renal insufficiency</td>
<td>26%</td>
<td>26%</td>
<td>-</td>
<td>-</td>
<td>48%</td>
</tr>
<tr>
<td>Anemia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14%</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>40%</td>
<td>45%</td>
<td>24% noninsulin/15% insulin</td>
<td>26% noninsulin/17% insulin</td>
<td>22% oral therapy/18% insulin</td>
</tr>
<tr>
<td>Obesity (%) or body weight, kg</td>
<td>-</td>
<td>-</td>
<td>78.5 (65.8–94.0)</td>
<td>78.9 (64.0–97.5)</td>
<td>25%</td>
</tr>
<tr>
<td>Laboratory data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hemoglobin, g/dl</td>
<td>-</td>
<td>-</td>
<td>12.5 ± 2.0</td>
<td>11.9 ± 2.0</td>
<td>12.4 (11.3–13.8)</td>
</tr>
<tr>
<td>Creatinine, mg/dl</td>
<td>1.6 ± 1.3</td>
<td>1.6 ± 1.5</td>
<td>1.4 (1.1-1.9)</td>
<td>1.3 (1.0-1.8)</td>
<td>1.3 (1.0-1.8)</td>
</tr>
</tbody>
</table>

Values are mean ± SD, median (interquartile range), or %. *A total of 274 hospitals included in the analysis cited. †Patients with an LVEF between 40% and 49% were excluded from this table. ADHERE – Acute Decompensated Heart Failure National Registry; BMI – body mass index; COPD – chronic obstructive pulmonary disease; EF – ejection fraction; GWTG – Get With The Guidelines; HF – heart failure; LVSD – left ventricular systolic dysfunction; OPTIMIZE-HF – Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure.

Outcomes Overview: Evidence regarding the outcomes of HFpEF versus HFrEF patients varied in the different populations, but overall, the data suggest HFpEF is associated with substantial morbidity and mortality that approaches or matches that of HFrEF. The burden of comorbidities in HFpEF and HFrEF, in particular, is associated with important clinical outcomes in HFpEF patients. But comorbidities in HFpEF and HFrEF differ with region and ethnic minority populations with HF. HFpEF is not merely a disease of old age and multiple comorbidities, but is a distinct entity associated with worse prognosis and severe cardiovascular dysfunction, with resultant myocardial fibrosis and clinical HFpEF. Although HFpEF is associated with substantial morbidity and mortality that approaches or matches that of HFrEF, the burden of comorbidities in HFpEF and HFrEF is different.
Associating Between HFpEF and HFrEF, With Comorbidities

Pathways linking several common comorbidities to disease progression in both heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF) are presented, and factors exacerbating other comorbid conditions are highlighted. These comorbidities are interrelated by several common mechanisms, including inflammation and worsening congestion, as well as by sympathetic and renin-angiotensin-aldosterone system activation. Heart failure influences each of the comorbidities, demonstrating the bidirectional association. CV = cardiovascular; LV = left ventricular; RAAS = renin-angiotensin-aldosterone system; RV = right ventricular.

CENTRAL ILLUSTRATION

<table>
<thead>
<tr>
<th>COMORBIDITY</th>
<th>BIDIRECTIONAL IMPACT ON DISEASE PROGRESSION</th>
<th>HEART FAILURE SPECIFICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>Inflammation; hypoxia; parenchymal changes; airflow limitation, leading to pulmonary congestion; abnormal left ventricular (LV) diastolic filling; inhaled beta-agonist cardiovascular effects</td>
<td>More prevalent in preserved ejection fraction (HFpEF), compared to reduced (HFrEF)</td>
</tr>
<tr>
<td>Anemia</td>
<td>Adverse LV remodeling; adverse cardiorenal effects; increased neurohormonal and inflammatory cytokines</td>
<td>More prevalent in HFpEF</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Diabetic cardiomyopathy; mitochondrial dysfunction; abnormal calcium homeostasis; oxidative stress; renin-angiotensin-aldosterone system (RAAS) activation; atherosclerosis; coronary artery disease</td>
<td>More prevalent in HFpEF</td>
</tr>
<tr>
<td>Renal dysfunction</td>
<td>Sodium and fluid retention; anemia; inflammation; RAAS and sympathetic activation</td>
<td>Similar prevalence in both groups</td>
</tr>
<tr>
<td>Sleep-disordered breathing</td>
<td>Hypoxia; systemic inflammation; sympathetic activation; arrhythmias; hypertension (pulmonary and systemic); RV dysfunction; worsening congestion</td>
<td>Similar prevalence in both groups</td>
</tr>
<tr>
<td>Obesity</td>
<td>Inflammation; reduced physical activity and deconditioning; hypertension; metabolic syndrome; diabetes mellitus</td>
<td>More prevalent in HFpEF</td>
</tr>
</tbody>
</table>

...needed because smoking would also be expected to increase risk for coronary events and resultant ischemic cardiomyopathy with reduced EF. An alternative explanation for the close association between COPD and HFpEF involves coupling between impaired LV filling and pulmonary venous changes due to lung parenchymal abnormalities (32). Moreover, HF may result in pulmonary function changes and patient symptoms that mimic COPD. Because patients with preserved EF do not have the alternative diagnosis of low EF, they may be more likely to receive a COPD diagnosis as an explanation for dyspnea (33,34). Despite the potential for bias related to increased COPD diagnosis in HFpEF patients, the consistent observation of increased COPD prevalence in HFpEF patients suggests that concomitant pulmonary and cardiac dysfunction may be particularly important in the preserved EF group.

The primary effect of COPD seems to be increased noncardiovascular mortality during HF hospitalization (6), with similar outcomes in the early period after discharge (35). COPD is associated with increased long-term morbidity (36) and mortality (25). HF patients with COPD are less likely to receive beta-blockers compared with those without COPD (36), possibly due to clinicians’ concerns about precipitating bronchoconstriction (33,37,38). The overlapping symptom of dyspnea with both diseases may lead to misapplication of therapy. Given the discordant beta-receptor effects of the different disease treatments, a patient’s symptoms and outcome could be adversely affected by the treatment of the comorbid disease. HF patients with COPD also tend to have lower blood pressure, higher creatinine levels, and underuse of angiotensin-converting enzyme inhibitors and mineralocorticoid receptor antagonists.
(6,35). These characteristics likely contribute to the increased mortality risk associated with COPD in patients with HF.

In a recent analysis of the differential association between comorbidities and outcomes in HFrEF and HFpEF patients, COPD was the only comorbidity for which there was a significant interaction (p = 0.01) with EF group and outcomes. COPD contributed to a higher hazard for mortality in patients with HFpEF compared with HFrEF (24). Notably, COPD was an independent predictor of mortality in both groups. These between-group differences are supported by findings from another small study in which COPD was highly predictive of death in those with HFpEF but not HFrEF (39). Data from the Framingham Heart Study support a potential causal role between airflow limitation and HFpEF but not HFrEF (40). The link between even mild airflow limitation and abnormal LV diastolic filling (41) may explain, in part, the stronger association between COPD and HFpEF.

COPD treatment recommendations focus on prevention, including vaccinations and smoking cessation. Pending randomized trial data, chronic therapy with long-acting anticholinergic agents is recommended preferentially over the use of inhaled beta-agonists (37). Early intervention in the setting of exacerbations and a multidisciplinary approach may be indicated to balance therapies for both diseases (33). Intravascular volume management may represent an area of particular focus, with the goal of minimizing LV filling pressures and pulmonary interstitial fluid, even in the presence of agents that adversely affect volume status, such as corticosteroids. With respect to beta-blocker use, there is a mechanistic rationale to consider the preferential use of cardioselective agents, such as metoprolol succinate or bisoprolol, rather than carvedilol (37). Evidence from several small studies supports this approach (38,42,43). However, observational studies suggested that there is no differential benefit with cardioselective agents compared with noncardioselective agents (36,44). Thus, adequately powered prospective studies are needed to determine the optimal beta-blocker approach in HF patients with COPD.

Anemia. Comorbid anemia is more frequent in HFpEF patients than in HFrEF patients. Prevalence reports vary depending on the specific anemia definition used, but the trends are comparable. Contemporary studies tend to use the World Health Organization classification of anemia as hemoglobin <13 g/dl in men and <12 g/dl in women (24). In the Get With The Guidelines Registry, there was an association between higher EF and increased prevalence of anemia (11). The prevalence of anemia was 22% in patients with an EF ≥50%, 20% with EF 40% to 49%, and 14% with EF <40%, and there were also sex-specific differences (45). The prevalence of anemia tended to be higher in women in the setting of either reduced or preserved EF. These findings are supported by an analysis from the OPTIMIZE-HF (Organized Program to Initiate Lifesaving Treatment in Patients with Heart Failure), which showed that HF patients (46) with low hemoglobin levels were older, more often female, and had preserved systolic function. In the CHARM (Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity) program, lower hemoglobin was associated with higher EF (47). Furthermore, female sex, DM, and worse renal function were several of the strongest predictors of anemia. These findings suggest a complex relationship between EF and anemia that likely involves inflammation, hemodilution, bone marrow deficiency, nutritional and metabolic factors, and nephropathy (48). In addition, studies suggest that anemia may increase cardiac output and reduce systemic resistance through nitric oxide-mediated vasodilation (49-51).

Anemia is associated with increased morbidity and mortality in HF patients (52-55). Potential explanations include adverse LV remodeling effects (56), increased neurohormonal and inflammatory cytokines (49), adverse cardiorenal effects (57), and the association with poor nutritional status (47). Multiple previous studies have reported that there is no interaction between EF and outcomes related to anemia status. For instance, in 1 study, anemia was associated with an ~25% increased mortality risk in HFrEF and HFpEF patients (24). Similarly, Felker et al. (28) demonstrated that anemia was independently associated with mortality, and there was no evidence of an interaction with systolic function. A recent analysis from the SENIORS (Study of the Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors with Heart Failure) trial, which included HF patients irrespective of LVEF, extends these results to morbidity endpoints (58). Anemic patients were at increased risk for the composite of all-cause mortality or cardiovascular hospitalization and mortality, or HF hospitalization, regardless of underlying HFrEF or HFpEF. Notably, the overall representation of patients with LVEF >50% in SENIORS was modest. The inability to demonstrate a differential relationship between anemia and outcomes in those with HFpEF versus HFrEF may be related, in part, to the number of different etiologies for anemia.

Because of the neutral results of recent trials targeting anemia with erythropoietin-stimulating agents in HFrEF patients (59), the optimal treatment of
underlying anemia in HF requires further study. Given iron deficiency’s relation to anemia status and its potential as a treatable target, this area is of particular interest (60). The prevalence of iron deficiency in HF patients is even greater than the prevalence of clinical anemia. Furthermore, iron deficiency may affect outcomes in HFpEF and HFrEF independent of anemia (61). Iron deficiency leads to worsening HF symptoms, HF progression, and poor outcomes (62). Ongoing and future studies will explore the effect of iron replacement in both HFpEF and HFrEF patients.

Diabetes mellitus. Registry and observational data consistently report the presence of DM in ~40% of HFrEF patients versus 45% of HFpEF patients (2, 10, 24). DM is associated with the development of myocardial dysfunction, even in the absence of significant coronary artery disease or hypertension (i.e., diabetic cardiomyopathy) (63). Myocardial changes result from insulin resistance and hyperglycemia through various mechanisms, including increased free fatty acid concentration, mitochondrial dysfunction, abnormal calcium homeostasis, RAAS activation, oxidative stress, and advanced glycation end products (63, 64). Development of systolic dysfunction may be preceded by myocardial fibrosis and collagen deposition, resulting in diastolic dysfunction (65, 66). Importantly, the relationship between DM and HF seems bidirectional, with HF also increasing the risk for subsequent DM (67). The mechanisms underlying the effect of HF on incident DM or on DM progression are not completely known, but they may involve sympathetic and RAAS activation, with subsequent lipolysis and increased cytokine production (68, 69).

DM is associated with increased morbidity and mortality in patients with chronic HF (29, 70), but its influence as a predictor of long-term outcomes after HF hospitalization is less well defined. Several acute HF registries have suggested that DM patients are at increased risk for mortality (71, 72). However, in the OPTIMIZE-HF registry, DM patients were at increased short-term risk for rehospitalization but at similar risk for in-hospital and short-term mortality (73). Similarly, in the EVEREST (Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study with Tolvaptan) study, DM was associated with increased HF rehospitalization but not with all-cause mortality (74). DM may complicate the clinical course of HF patients through various mechanisms, including electrolyte disturbances, increased infection risk, and altered medication absorption, as well as through ischemia and other direct adverse effects on the myocardium (1).

The impact of DM in patients with HFpEF versus HFrEF is not well defined. One recent analysis demonstrated that the point estimate of hazard for mortality associated with DM was greater in HFrEF patients than in HFpEF patients, but formal statistical testing did not find an interaction between the DM and EF groups (24). An analysis from CHARM demonstrated that DM was associated with similarly increased risk for mortality in HFpEF and HFrEF patients (29). In contrast, DM was associated with increased cardiovascular death or HF hospitalization in HFpEF patients compared with HFrEF patients. This difference was due to an increased risk for HF hospitalization associated with DM in HFpEF patients. However, in an analysis from OPTIMIZE-HF, HFpEF patients with DM were not at increased risk for 60- to 90-day mortality or rehospitalization, in contrast to the increased risk associated with DM in HFrEF patients (interaction p = 0.0012) (73). Thus, the impact of DM on outcomes in different EF groups is not entirely clear, but it may be related to predominant effects on long-term HF rehospitalization, rather than mortality. It is also possible that there are differential effects in patients who had a recent HF hospitalization compared with those who have chronic, stable HF.

The optimal treatment of comorbid diabetes in HF patients is unclear. Several classes of antidiabetic agents such as thiazolidinediones and dipeptidyl peptidase 4 inhibitors were shown to be associated with increased risk of HF (75, 76). Alternatively, ongoing studies are investigating whether antidiabetic agents, such as glucagon-like peptide-1 agonists, may improve outcomes in HF patients via benefits on cardiac metabolism (FIGHT [Functional Impact of GLP-1 for Heart Failure Treatment; NCT01800968]). Despite metformin’s package label warning about its use in patients with HF, the occurrence of lactic acidosis is exceedingly low in clinical practice, and recent observational data (77) suggest possible benefits on clinical outcomes associated with its use in HF. Ongoing large-scale diabetes studies investigating cardiovascular outcomes, including HF, will inform the management of DM in these patients (EXSCEL [Exenatide Study of Cardiovascular Event Lowering Trial; NCT01144338]). Pending the results of these studies, the treatment of DM in patients with HF should preferentially include agents with favorable safety profiles in patients with cardiovascular disease (78). Given the key roles of obesity and metabolic syndrome in the underlying pathophysiology (79), they may also represent important targets in DM patients with HF, particularly those with HFpEF.
Renal dysfunction. Registry data indicate a similar extent of renal insufficiency in HF patients across the EF spectrum (2,11). The reports vary significantly in different datasets, depending on the specific criteria used, but the figures are similar in patients with HFrEF and HFP EF. The interdependence of heart and kidney dysfunction is captured by the recently described “cardiorenal syndrome” (7,80). Renal dysfunction may worsen HF through multiple mechanisms, including increased sodium and fluid retention, anemia, inflammation, and uremic toxins, as well as RAAS and sympathetic activation. A recent analysis found a significant association between urinary markers of renal dysfunction and the risk for new-onset HFP EF but not HFrEF (81). Conversely, HF may lead to renal dysfunction and cardiorenal syndrome through mechanisms related to low cardiac output, accelerated atherosclerosis, inflammation, and increased venous pressure. The multitude of mechanisms that may result in renal dysfunction could, in part, explain its similar prevalence in HFP EF and HFrEF patients. For instance, HFP EF patients may be more likely to have underlying renal dysfunction related to diabetic nephropathy, whereas atherosclerosis may contribute to renal function changes in patients with HFrEF due to ischemic/ nephrosclerotic etiology (16).

Renal dysfunction is an established risk factor for adverse events in patients with HF (82,83). ADHERE (Acute Decompensated Heart Failure National Registry) revealed that more than one-half of acute HF patients had at least moderate renal insufficiency on admission, which was associated with increased mortality (84). Importantly, recent data have demonstrated that the association between renal dysfunction and poor outcomes is complex. For instance, transient worsening renal function during acute HF hospitalization may not affect post-discharge outcomes (85,86), and aggressive fluid removal leading to hemocoencentration may be associated with lower mortality, despite evidence of worsening renal function (86). Thus, the underlying cause and trajectory of renal dysfunction could play a role in determining the impact on subsequent outcomes. Notably, HF patients with renal dysfunction tend to be older, with lower blood pressure and higher plasma B-type natriuretic peptide levels (87). Kidney disease also affects guideline-directed medical therapy in HFrEF patients due to concerns about worsening glomerular filtration rate and hyperkalemia (87). In addition to similar prevalence in HFrEF and HFP EF patients, the increased risk associated with the comorbidity is similar in both patient groups. Ather et al. (24) demonstrated that renal insufficiency was associated with an ~25% to 30% increase in mortality. In a community-based HF patient cohort, worsening estimated glomerular filtration rate was associated with a graded increase in the risk for death and hospitalization, with similar findings in those with HFP EF and HFrEF (30).

The implications of renal insufficiency for the treatment of HFP EF and HFrEF patients are several-fold. First, despite concerns related to hyperkalemia, therapies such as angiotensin-converting enzyme inhibitors should be initiated and monitored in accordance with current guidelines (88,89). Recent data suggest that worsening renal function while on an RAAS inhibitor has a better prognosis than with placebo, suggesting that a RAAS inhibitor should not necessarily be discontinued in patients who develop worsening renal function (90). Renal insufficiency may also have important implications related to the management of volume status and the titration of diuretic therapies. For instance, with more severe underlying renal disease, it may be necessary to consider alternative loop diuretic agents, such as torsemide, or the addition of a thiazide diuretic agent (91).

Sleep-disordered breathing. In recent years, the prevalence and impact of SDB in HF patients have been increasingly recognized, and multiple ongoing registries are collecting data in this regard (SchlaHF—Sleep-Disordered Breathing in Heart Failure; NCT01500759)). Previous studies have found that SDB is prevalent in both those with HFP EF and those with HFrEF, occurring in upward of 50% to 80% of patients (92–94). Two primary types of SDB occur and may coexist in HF patients: obstructive sleep apnea (OSA) and central sleep apnea (CSA). HFP EF patients tend to more often have OSA, compared with HFrEF patients who tend to have CSA to a greater extent (95). Women with HF are less likely to have SDB compared with men, and its severity may be lower (96). Risk factors for the development of both types of SDB in HF patients include male sex and increased age (97,98). Elevated body mass index is an additional risk factor for OSA, whereas severe LV impairment and atrial fibrillation increase the likelihood of CSA (97,99). SDB is proinflammatory, with effects on oxidative stress and sympathetic activation (94).

SDB has been associated with increased morbidity and mortality in the general population (100-102); however, its impact on HF patient outcomes is less well defined. The majority of studies in HF patients focused on HFrEF patients, who had SDB that was an independent predictor of cardiac readmission (103). In 164 patients with chronic stable HFrEF, untreated
TABLE 2 Treatments for Comorbidities in Patients With HFpEF and Those With HFrEF

<table>
<thead>
<tr>
<th>Comorbidities</th>
<th>Recommendations/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>Emphasis on prevention (e.g., vaccinations, smoking cessation)</td>
</tr>
<tr>
<td></td>
<td>Consider preferential use of inhaled anticholinergics over beta-agonists pending definitive clinical trials</td>
</tr>
<tr>
<td></td>
<td>Early intervention in the setting of exacerbations of either disease</td>
</tr>
<tr>
<td></td>
<td>Multidisciplinary management with cardiology and pulmonary</td>
</tr>
<tr>
<td></td>
<td>Volume optimization may be particularly important in these patients</td>
</tr>
<tr>
<td></td>
<td>Preferential use of cardioselective beta-blockers (metoprolol succinate or bisoprolol) pending additional prospective trials</td>
</tr>
<tr>
<td>Anemia</td>
<td>Thorough evaluation and treatment of underlying cause(s) of anemia</td>
</tr>
<tr>
<td></td>
<td>Management of contributing factors such as renal insufficiency and diabetes</td>
</tr>
<tr>
<td></td>
<td>Broad application of erythropoietin-stimulating agents in HFpEF is not supported by previous studies</td>
</tr>
<tr>
<td></td>
<td>Iron deficiency may represent a relevant treatment target</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>Avoid diabetic therapies that have been associated with increased risk of heart failure (e.g., TZDs, DPP-4 inhibitors)</td>
</tr>
<tr>
<td></td>
<td>Careful monitoring for other diabetic agents (e.g., metformin) in the setting of heart failure decompensation and renal dysfunction</td>
</tr>
<tr>
<td></td>
<td>Preferential use of metformin may be reasonable pending prospective trials given observational data suggesting benefits for clinical outcomes</td>
</tr>
<tr>
<td>Renal dysfunction</td>
<td>Appropriate initiation of ACE inhibitors/ARBs and MRAs, as able, with careful clinical monitoring</td>
</tr>
<tr>
<td></td>
<td>Volume status may be a key target of intervention</td>
</tr>
<tr>
<td></td>
<td>Alternative loop diuretic agents (e.g., torsemide) may be indicated</td>
</tr>
<tr>
<td></td>
<td>Multidisciplinary management with cardiology and nephrology</td>
</tr>
<tr>
<td>Sleep-disordered breathing</td>
<td>CPAP or ASV device therapy may provide benefits on clinical status (outcomes benefit undefined)</td>
</tr>
</tbody>
</table>

ACE = angiotensin-converting enzyme; ARB = angiotensin receptor blocker; ASV = adaptive servo-ventilation; COPD = chronic obstructive pulmonary disease; CPAP = continuous positive airway pressure; DPP-4 = dipeptidyl peptidase 4; HFpEF = heart failure with preserved ejection fraction; HFrEF = heart failure with reduced ejection fraction; MRA = mineralocorticoid receptor antagonist; TZDS = thiazolidinediones.

OSA was associated with increased mortality on multivariable analysis (104). CSA was also shown to be a predictor of mortality in HFrEF (105). However, not all studies demonstrated a relationship between SDB and outcomes in HFrEF patients (106,107).

To our knowledge, no previous studies scrutinized a differential association between SDB and outcomes in HFrEF versus HFpEF patients. Studies to date in HFpEF patients generally assessed <200 patients, with the emphasis on describing prevalence and patient characteristics, rather than outcomes (95,108). Thus, future research is needed to explore the impact of SDB on outcomes in HFpEF. SDB may represent a particularly important comorbidity in HFpEF patients, given the high prevalence of obesity in this patient population.

The primary treatment for OSA is nocturnal continuous positive airway pressure (CPAP). Although observational studies in HF patients with OSA suggested potential benefits with CPAP on clinical outcomes (109), large-scale randomized studies are needed. The role of CPAP in CSA is even less well defined. The largest randomized, prospective study of HF patients with CSA (N = 258) found no survival benefit with CPAP, despite improvements in EF and functional status (110). Compared with CPAP devices, minute ventilation-targeted adaptive servo-ventilation may treat both CSA and OSA with improved tolerability. Studies have demonstrated benefits on surrogate endpoints with adaptive servo-ventilation in HF patients (111,112). Survival benefits with adaptive servo-ventilation in HF patients have not been demonstrated, and randomized trials are ongoing (SERVE-HF [Treatment of Predominant Central Sleep Apnoea by Adaptive Servo Ventilation in Patients With Heart Failure; NCT00733343] and CAT-HF [Cardiovascular Improvements With MV ASV Therapy in Heart Failure; NCT01953874]).

OTHER COMORBIDITIES. Obesity is common in the general HF population, with a higher prevalence in HFpEF patients (Table 1). Although increased body weight has been associated with improved outcomes in cardiovascular disease populations (113), recent reports discussed a balanced reappraisal of this obesity paradox (114,115). A higher weight may be associated with better outcomes compared with HF patients with cardiac cachexia and/or nutritional deficiencies. Potential mechanisms for improved outcomes associated with obesity include increased metabolic reserve and lipoprotein pools to serve as scavengers for circulating endotoxins. However, the associations between obesity and metabolic syndrome, glucose intolerance, and diabetes are likely to explain, in part, the link between increased body weight and adverse events in certain circumstances.

For instance, a recent study in 4,109 HFpEF patients found a U-shaped relationship between body mass index and adverse clinical events. Body mass indices <23.5 or ≥35 kg/m² were each associated with a 27% increase in death or cardiovascular hospitalization, compared with the reference group body mass index of 26.5 to 30.9 kg/m² (116). Future studies are needed to assess whether treatment strategies targeting appropriate weight gain or weight reduction can improve outcomes in both HFpEF and HFrEF patients.

Additional important comorbidities in HF patients include frailty and arthritis (117). Frailty, limited mobility, and fall risk are increasingly recognized as important predictors of outcomes in HF patients (118). Osteoarthritis is of particular interest, given the inflammatory hypothesis linking comorbidities and adverse cardiovascular outcomes (119). Furthermore, nonsteroidal anti-inflammatory drug treatment for osteoarthritis may have direct consequences on fluid retention and the precipitation of acute HF. There is a need for future research on these topics as well as on
depression, myopathy, and liver disease, with respect to implications for the management and outcomes of HFpEF and HFrEF patients.

CLINICAL PRACTICE AND IMPLICATIONS FOR FUTURE TRIAL DESIGN. Although the presence of multiple comorbid diseases is almost universal in clinical practice, HF guidelines provide little discussion of this, and the evidence base is sparse and mostly observational. Compared with HFrEF patients, those with HFpEF tend to have an increased burden of COPD, DM, and anemia, which are associated with increased morbidity and mortality. Because the development of novel HF therapies has slowed in recent years, and most contemporary HF trials have failed to improve outcomes above standard medical therapy (120,121), we suggest the need for a critical reappraisal of treatment strategies in HF in which clinicians target comorbidities, in addition to targeting the underlying cardiac dysfunction (Table 2). This approach may be particularly relevant for HFpEF patients for whom no therapies are available to reduce the substantial morbidity and mortality. In addition, on the basis of the recent data discussed earlier, improved management of specific comorbidities in HFpEF patients may have an even greater impact than in HFrEF. Most studies to date targeting comorbidities in HF patients have focused on the HFrEF population, with few interventions on comorbidities empirically

FIGURE 1 Clinical Trial Considerations Related to Comorbidities

Trial protocols should consider feasibility of encouraging the inclusion of patients with comorbidities (as able). Trial sites should be selected partly on the basis of the comorbidity burden of the patient populations. Intensified safety monitoring may be needed in the context of comorbidities. Study entry criteria may need to be adjusted to acknowledge differences in biomarker thresholds in the context of comorbidities such as obesity and/or renal function. Exclusionary biomarker criteria (e.g., renal biomarkers) might offer mechanisms to support patient safety. Comorbidities should be targeted, as able, as a primary intervention and include comorbidity-specific trial endpoints (e.g., dyspnea relief and beta-blocker usage in the context of chronic obstructive pulmonary disease [COPD]). Trialists should also take into account regional differences in the prevalence of comorbidities when performing sample size calculations and designing trials (e.g., differential event rates in the presence of comorbid diseases).
evaluated in HFP EF patients. Given that many of these conditions are closely interrelated and may potentiate each other, targeting comorbidities may represent an important component in the comprehensive management of HF patients.

Another major clinical implication of these data relates to polypharmacy, particularly in the elderly, in whom the prevalence of HF rises sharply. Elderly patients may exhibit variable responses to standard medical HF therapy and are also more prone to experience adverse effects. Because the elderly also have more comorbidities requiring specific therapies, polypharmacy is commonplace. Medications with opposing actions may be used simultaneously (e.g., inhaled beta-agonists, beta-blockers) such that medications for non-HF comorbidities may exacerbate HF and vice versa. In general, polypharmacy increases the potential for drug interactions and reduces patients’ compliance. Moreover, frailty and cognitive impairment are more common among elderly HF patients and represent additional risks for nonadherence.

Data on the specific role of polypharmacy in HFrEF versus HFP EF are lacking. Given the greater burden of comorbidities in HFP EF, it is reasonable to assume, however, that the negative impact of polypharmacy is at least as great in HFP EF compared with HFrEF. At the same time, HF trials that established morbidity and mortality benefits were predominantly executed in nonelderly cohorts. Assumption of similar efficacy in geriatric populations is mostly on the basis of extrapolation of these data, but the true risk-benefit ratio may be less favorable.

These observations also may have important implications for future HF trial design. As the clinical trial landscape transitions toward more pragmatic trials with broad entry criteria, in some circumstances, study populations may (and perhaps, should) increasingly include those with multiple comorbid diseases. Noncardiologists managing HF patients cite comorbidity and lack of generalizability of previous trials to comorbid patients as a “reason” for not applying standard therapies. Improved generalizability of trial results could translate into increased uptake of evidence-based treatments for both HF and comorbid diseases. Although this approach may be possible in HFrEF, given the heterogeneity of the patient population, broad entry criteria for trials in HFP EF might be more likely to fail. Strategies to promote success include use of natriuretic peptide levels for entry criteria, as highlighted by the results of the recent TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist) study (122). Importantly, data suggest that the use of different threshold levels for natriuretic peptides may be appropriate in HFP EF versus HFP EF patients, as well as in those with obesity and renal dysfunction (123). Considerations for trial design related to comorbidities are summarized in Figure 1. Importantly, the inclusion of patients with comorbidities in clinical trials may require intensified monitoring and safety evaluations. For instance, there are notable comorbidity-specific adverse effects associated with certain medications (e.g., hyperkalemia with RAAS inhibition in renal dysfunction patients). Finally, given the recent lack of success in HF clinical trials using add-on HF-directed therapies (e.g., direct renin inhibitors [124]), another potential trial approach is to specifically target underlying comorbidities to improve overall patient outcomes.

CONCLUSIONS

Compared with HFrEF, patients with HFP EF have an increased burden of COPD, DM, anemia, and obesity but a similarly high prevalence of renal disease and SDB. In general, the increased risk for morbidity and mortality associated with these comorbidities is similar in those with HFP EF and HFrEF. Careful attention to the diagnosis and management of specific comorbidities in HF patients may help to improve patient outcomes, but further observational and interventional research is urgently required, particularly as noncardiac comorbidity is almost universal in the typical HF population.

REPRINT REQUESTS AND CORRESPONDENCE: Dr. Robert J. Mentz, Duke University Medical Center, 2301 Erwin Road, Durham, North Carolina 27710. E-mail: robert.mentz@duke.edu.

REFERENCES

47. O’Meara E, Clayton T, McIntegert MB, et al., for the CHARM Committees and Investigators. Clinical correlates and consequences of anemia in a broad spectrum of patients with heart failure: results of the Candesartan in Heart Failure.

80. Waldum Ø, Os P. The cardiorenal syndrome: what the cardiologist needs to know. Cardiology 2013;126:175-86.

89. McMurray JJ, Adamopoulos S, Anker SD, et al., for the ESC Committee for Practice Guidelines. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 2012;33:1787-847.

KEY WORDS: comorbidities, ejection fraction, heart failure

APPENDIX For the Medline (via PubMed) search strategy, please see the online version of this article.